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Final Report
Coherent Structures and Chaos in Beam Plasmas
AFOSR Grant No. F49620-97-1-325

This report summarizes our research carried out under the auspices of the above
referenced grant from May 1, 1997 to December 31, 1999. The goal of this research is to
.investigate coherent structures and chaos in beam plasmas in regimes relevant to the
development of advanced microwave/millimeter wave sources. Preprints and reprints
describing detailed findings in recent investigations are provided in a compendium of 1997-
2000 reprints in refereed journals at the end of this report. The following is a brief summary
of our research accomplishments in selected areas.

1. Mechanisms of Chaotic Electron Motion and Beam Halo Formation [1-3]

An important issue in the design of HPM tubes is how to prevent high-intensity -

relativistic electron beams from forming halos because they cause electron beam losses and
subsequent plasma formation, rf pulse shortening and rf breakdown [4]. Under the auspices
of this grant, investigations were conducted of mechanisms by which chaotic particle motion
and halo formation occurs [1-3].

In particular, it was found [5,6] that there are two important mechanisms for chaotic
particle motion and halo formation in high-intensity electron beams in such systems as high
power klystrons. One mechanism is due to a root-mean-square (rms) mismatch between the
beam and externally applied focusing field [S]. The rms mismatch is induced by the bunching
of the electron beam by intense rf (radiation plus electrostatic wave) fields inside the device.
Above a certain threshold, rms mismatched electron beams produce pronounced (sizable)
halos asymptotically. For high-intensity electron beams, the threshold occurs at the relative
envelope mismatch of 42%, as predicated analytically and confirmed by self-consistent
simulations in earlier work [7]. The other mechanism is due to the subtle effect of a
mismatch in the particle phase-space distribution (e.g., a nonuniform charge density
distribution) under the rms matching condition [6]. In HPM tubes, the former is primarily
responsible for halo formation in highly bunched electron beams caused by intense rf fields,
whereas the latter is primarily responsible for halo formation in the transport of electron
beams in the absence of any significant rf field.

Detailed comparisons were made between the 2-D Green’s function-based simulations
[1-3,5] and the experimental observations of electron beam halo formation and beam loss in
the 50 MW, 11.4 GHz periodic permanent magnet (PPM) focusing klystron experiment [8] at
the Stanford Linear Accelerator Center (SLAC). Because of the availability of more precise
experimental data, considerable improvements [1-3] were made in the comparisons after we
reported initial results of our investigation [5]. The results were presented at a number of
technical meetings, including an invited paper [1] at the 1999 APS Division of Plasma
Physics Annual Meeting in Seattle, Washington.




2. Discovery of Intense Electron Beam Equilibria in Periodic Focusing Fields [1,9,10]

The fundamental reason for the two important mechanisms [5,6] for chaotic particle
motion and halo formation is that the electron beam is far from equilibrium (or quasi-
equilibrium) in the field configuration consisting of external applied (static and/or rf) fields
and the self-fields generated by the beam. Therefore, in order to invent techniques for prevent
intense electron beams from developing halos, a better understanding of the equilibrium
properties of high-intensity electron beams must be gained. Under the auspices of this grant,
we investigated intense electron beam equilibria in periodic solenoidal focusing fields and
studied the influence of the equilibrium profile on the phase-space structure of the beam.

2.1. Determination of the Phase Space Structure for an Intense Beam in the Rigid-Rotor
Vlasov Equilibrium [10]

An analysis [10] was made of the phase space structure for test particle motion in the
field configuration consisting of an applied periodic solenoidal magnetic field and the self-

fields of an intense beam in the rigid-rotor Vlasov equilibrium [11] to address the -

fundamental question: How does the phase space structure vary with beam intensity,
focusing field strength,-and beam rotation under the ‘best’ conditions corresponding a
matched equilibrium beam. By examining the intrinsic properties of the phase space of the
test particle motion as a function of these parameters, valuable insights were gained as to
which operating regimes are more or less robust against the ejection of halo electrons form
the beam interior (core) under small beam mismatch and/or collective excitations in the beam
core. Detailed findings of this investigation are reported in [10], two important results are:

a) Increasing the beam intensity induces more pronounced nonlinear resonances and
chaotic structures in the phase space of the particle motion; and

b) Increasing the average canonical angular momentum of the beam reduces the
chaotic behavior in the phase space of the particle motion.

These results may be used in future design of HPM tubes to prevent beam losses.
2.2. Cold-Fluid Corkscrewing Elliptic Beam Equilibrium [1,9]

It was shown [1,9] that there exist a new class of cold-fluid corkscrewing elliptic beam
equilibria for intense electron or ion beam propagation through a linear focusing channel
consisting of uniform solenoidal, periodic solenoidal and alternating-gradient quadrupole
focusing magnets in an arbitrary arrangement including field tapering. The equilibrium
density and flow velocity profiles were determined, and generalized beam envelope
equations were derived. The equilibrium beam theory was verified [1,9] with self-consistent
simulations using the Green’s function based code [12]. o




The stability properties of the corkscrewing elliptic beam equilibrium are being studied.
It is anticipated that the new corkscrewing elliptic beam equilibrium may be used to improve
beam transport and beam confinement in high-power microwave sources.

3. Discovery of Ultrahigh-Frequency Stimulated Radiation from
Spatiotemporally Gyrating Relativistic Electron Beams [13-15]

Under the auspices of this grant, a theoretical investigation was made of stimulated
electromagnetic interactions in relativistic gyrating beam with strong spatial, temporal, or
spatiotemporal correlations [13-15]. In this investigation, the equilibrium distribution
function for a spatiotemporally gyrating beam is assumed to be of the form f,(p..p,.%),
where the magnitude of the perpendicular momentum p, , axial momentum p,, and variable
x= ¢—mc(z—v,t)/(v, —v,) are the single-partricle constants of motion for the electrons, and ¢
and o, are the electron gyrophase and electron cyclotron frequency, respectively. An axial-

dependent distribution corresponds to the v,=0 limit of the spatiotemporal distribution, .

whereas a time-dependent distribution corresponds to the v, =« limit of the spatiotemporal

distribution. Beams with axial dependent distributions have been used in gyroamplifier and
cyclotron autoresonance maser (CARM) experiments [16], and those with time-dependent
distributions have been used in gyroklystrons [17]. More recently, spatiotemporally gyrating
beams are used in harmonic converter experiments [18].

While results of our investigation are detailed in [13-15], the important findings are as
follows.

a) The growth rate of the cyclotron maser instability is sensitive to the detailed
distribution in the variable y , including the enhancement of the instability growth
rate [13]; :

b) The gain bandwidth depends critically on the phase velocity v,[14,15]; and

c) Spaﬁotemporaﬂy gyrating relativistic electron beams with v, ~v, exhibit a new
effect, namely, stimulated interactions at ultrahigh frequencies with o >>2y’e,
[14,15].

Item c) listed above can be used to develop high-frequency gyroamplifiers that can operate
with low-voltage electron beams and low magnetic fields to satisfy key requirements in
‘airborne radar applications.

4. Discovery of Omnidirectional Reflectivity and Omniguide [19,20]

As a spin-off of the research and excellent eduation funded under the auspices of this
grant, a novel dielectric omnidirectional reflector [19] has been invented recently and




demonstrated experimentally by a term of Massachusetts Institute of Technology’s
researchers. Such an omnidirectional reflector, which consistent of multiple alternating layers
of dielectric materials with sharp contrast in the index of refraction, can reflect light in
arbitrary direction with arbitrary polarization over a wide range of wavelength. Since the
publication of this invention [19], it has generated considerable interests from government
(especially DOD) laboratories, private industries, and news media [21,22]. An omniguide
was also invented based on the principles of ommidirectional reflectivity [20]. We are
currently developing a Photonic Bandgap Structure Simulator (PBGSS) for the modeling of
metallic photonic bandgap structures for use in HPM sources.

5. Interactions with Air Force Research Laboratory and Industries
We made numerous contacts with researchers (e.g., Dr. Tom Spencer and Dr. J. A.

Gaudet) at Air Force Research Laboratory, and communicated our research results with
them, through 1999 seminar presentation at AFRL as well as technical meetings such as the

1997, 1998 and 1999 APS DPP Meetings and 1998, 1999 and 2000 SPIE AeroSence. We

will continue our strong ties with AFRL. -

In an effort to transfer technology to private industry, we completed a conceptual design
for a high-power X-band relativistic two-stream amplifier. The design was done in
collaboration with Microwave Technologies, Inc. in Fairfax, Virginia, which is interested in
the experimental demonstration of the relativistic two-stream amplifier. Results of the design
were presented in the Intense Microwave Pulses Session at the SPIE Meeting held in San
Diego from July 31 to August 1, 1997, and were published [23]. In addition, we are also
establishing collaboration with Mission Research Corporation (MRC, contact persons: Dr.
Las Ludeking and Dr. Richard Smith) on relativistic magnetron research.

In the area of photonic bandgap research, we are establishing collaborations with both
Raytheon Systems Company (Contact person: Dr. Delmar Barker) and Omniguide, Inc., a
start-up company co-founded by our graduate student (Dr. Yoel Fink).
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Mechanisms and control of beam halo formation in intense microwave
sources and accelerators*

C. Chen' and R. Pakter
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 3 November 1999; accepted 7 February 2000)

Halo formation and control in space-charge-dominated electron and ion beams are investigated in
parameter regimes relevant to the development of high-power microwave (HPM) sources and
3 high-intensity electron and ion linear accelerators. In particular, 2 mechanism for electron beam halo
formation is identified in high-power periodic permanent magnet (PPM) focusing klystron
amplifiers. It is found in self-consistent simulations that large-amplitude current oscillations induce
mismatched beam envelope oscillations and electron beam halo formation, Qualitative agreement is
found between simulations and the 50 MW 11.4 GHz PPM focusing klystron experiment at Stanford
Linear Accelerator Center (SLAC) (D. Sprehn, G. Caryotakis, E. Jongewaard, and R. M. Phillips,
“‘Periodic permanent magnetic development for linear collider X-band Klystrons,” Proceedings of
the XIXth International Linac Conference, Argonne National Laboratory Report ANL-98/28, 1998,
p. 689). Moreover, a new class of cold-fluid corkscrewing elliptic beam equilibria is discovered for
ultrahigh-brightness, space-charge dominated electron or ion beam propagation through a linear
focusing channel consisting of uniform solenoidal magnetic focusing fields, periodic solenoidal
magnetic focusing fields, and/or alternating-gradient quadrupole magnetic focusing fields in an
arbitrary arrangement including field tapering. As an important application of such new cold-fluid
corkscrewing elliptic beam equilibria, a technique is developed and demonstrated for controlling of
halo formation and beam hollowing in a rms-matched ultrahigh-brightness ion beam as it is injected

ot bt e

from an axisymmetric Pierce diode into an alternating-gradient magnetic quadrupole focusing
channel. © 2000 American Institute of Physics. [S1070-664X(00)96105-6]

I. INTRODUCTION

One of the most challenging tasks in the development of
high-intensity microwave sources and high-intensity particle
accelerators is to prevent intense electron or ion beams from
beam losses.!? In high-intensity microwave sources, such as
those considered for directed energy applications and for
powering the next linear collider (NLC), a small fractional
loss of electrons into the radio-frequency (rf) structure will
inevitably induce secondary emission of electrons which, in
the presence of intense If fields, may cause an avalanche of
secondary electron emission and subsequent plasma forma-

tion and alteration in the frequency response or dispersion’

characteristics of the If structure. It is likely that a sequence
of such events ultimately leads to rf pulse shortening in high-
power microwave (HPM) sources.!”~” In high-intensity elec-
tron or ion accelerators, such as high-gradient electron linacs,
rf proton linacs for spallation neutron source, and induction

~ linacs for heavy ion fusion applications, losses of electrons

or jons in the accelerating structure may also result in intol-
erable radioactivity in the structure,? in addition to the sec-

ondary emission of electrons and/or ions.

While disruptive beam loss is caused by violent instabili-

. ties such as the beam-breakup (BBU) instability®~!! in the

beam, mild beam loss is often associated with the formation
of a tenuous halo'>?! around a dense core of a beam, mak-

- *Paper JI2 5 Bull. Am. Phys. Soc. 44, 163 (1999).
Thnvited speaker.
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ing physical contact with the inner wall of a microwave tube
or accelerator. From the point of view of beam transport,
there are two main processes for halo formation in high-
intensity particle (electron or jon) beams. One process is
caused by a mismatch in the roof-mean—square (rms) beam
envelope,lz‘ls and the other is due to a mismatch in the
particle phase-space distribution relative to an equilibrium
distribution.'®-?! Both processes can occur when the beam
intensity is sufficiently high, so that the particle beam be-
comes space-charge-dominated.

For a periodic focusing channel with periodicity length.S"
and vacuum phase advance oy, a space-charge-dominated
beam satisfies the condition®®

SK
40'06

>1,

whereas an emittance dominated beam satisfies the condition

SK
40'05

Here, K=24°N,/ y?,,B;‘;mcz is the normalized self-field per-
veance, €is the unnormalized transverse rms emittance of the
beam, N, is the number of particles per unit axial length, g
and m are the particle charge and rest mass, respectively,
Byc and vy, are the average axial velocity and relativistic
mass factor of the particles in the beam, respectively, and ¢
is the speed of light in vacuo. The emittance, which is essen-
tially the beam radius times a measure of randomness in the

<1.

© 2000 American Institute of Physics
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transverse particle motion, is often measured experimentally
or calculated in terms of the normalized transverse rms emit-
tance €,= 7,,8,€. For a uniform density beam with radius a
and temperature T, the normalized transverse rms emit-

tance is given by
a(7BsTo\ "
&=VBre= 5\ " |

where kg is the Boltzmann constant. For an electron beam,
the dimensionless parameter SK/4g€ can be expressed as

SK oy ox1075— (S) L
400 oo\ €, 7,,[3,,7’
where I, is the electron beam current in amperes, €, is the

normalized rms emittance in meter-radians, and S is in
meters. For an ion beam,

SK L1 (q)(S) I,
4006_1'6x 10 ood\e/\ €, ;%73%’

where A and g/e are the atomic mass and magnitude of the
charge state of the ion, respectively, I, is the ion beam cur-
rent in amperes, €,= ¥,,€ is the normalized rms emittance
in meter-radians, and S is in meters.

In this paper, halo formation and control in space-
charge-dominated electron and ion beams are investigated in
parameter regimes relevant to the development of HPM
sources and high-intensity electron and ion linacs. A mecha-
nism for electron beam halo formation is identified in high-
power periodic permanent magnet (PPM) focusing klystron
amplifiers. A new class of cold-fluid corkscrewing elliptic
beam equilibria is discovered for ultrahigh-brightness, space-
charge-dominated electron or ion beam propagation through
a linear focusing channel consisting of uniform solenoidal
magnetic focusing fields, periodic solenoidal magnetic focus-
ing fields, and/or alternating-gradient quadrupole magnetic
focusing fields in an arbitrary arrangement including field
tapering. As an important application of such new cold-fluid
corkscrewing elliptic beam equilibria, a technique is devel-
oped and demonstrated for controlling of halo formation and
beam hollowing in a rms-matched ultrahigh-brightness ion
beam as it is injected from an axisymmetric Pierce diode into
an alternating-gradient magnetic quadrupole focusing chan-
nel. In these studies, two-dimensional cold-fluid and self-
consistent electrostatic and magnetostatic models are used
whenever appropriate. The self-consistent model is based on
a Green’s function technique rather than a particle-in-cell
(PIC) technique.

In the study of electron beam halo formation in high-
power PPM focusing klystron amplifiers, the two-
dimensional self-consistent electrostatic and magnetostatic
model® for the transverse beam dynamics is used to analyze
equilibrium beam transport in a periodic magnetic focusing
field in the absence of a radio-frequency signal, and the be-
havior of a high-intensity electron beam under a current-
oscillation-induced mismatch between the beam and the pe-
riodic magnetic focusing field during high-power operation
of the device. Detailed simulation results are presented for
choices of system parameters corresponding to the 50 MW,

~and the

C. Chen and R. Pakter

11.4 GHz periodic permanent magnet (PPM) focusing kly-
stron experimcnt22 performed at the Stanford Linear Accel-
erator Center (SLAC). It is found that sizable halos appear
once the beam envelope undergoes several oscillations.

In the analysis and applications of cold-fluid corkscrew-
ing elliptic beam equilibria, the steady-state cold-fluid equa-
tions are solved with a general magnetic focusing field pro-
file. Generalized beam envelope equations for equilibrium
flow are obtained. It is shown that limiting cases of cold-fluid
elliptic beam equilibria include the familiar cold-fluid round
rigid-rotor beam equilibrium in a uniform magnetic focusing
field®% and both the familiar round rigid-rotor Vlasov
beam equilibrium?®® in a periodic solenoidal focusing field
familiar  Kapchinskij—Vladimirskij = beam
equi]ibrium29 in alternating-gradient quadrupole magretic
focusing field in the zero-emittance limit. As a simple ex-
ample, a cold-fluid corkscrewing elliptic beam equilibrium in
a uniform magnetic focusing field is discussed. As an appli-
cation of the present equilibrium beam theory, a general
technique is developed, and demonstrated with an example
for the controlling of beam halo formation and beam ‘hollow-
ing in ultrahigh-brightness beams. This technique is effective
before any collective instability may develop to reach con-
siderably large amplitudes.

The paper is organized as follows. In Sec. II, steady-staté
cold-fluid equations and two-dimensional self-consistent
model are presented for transverse electrostatic and magne-
tostatic interactions in a highintensity charged-paiticle beam
propagating through a linear focusing channel with a general
magnetic focusing field profile. In Sec. III, both equilibrium
beam transport and halo formation in high-power PPM fo-
cusing klystron amplifiers are studied. The equilibrium
(well-matched) beam envelope is determined for intense
electron beam propagation through a PPM focusing field,
and self-consistent simulations of equilibrium beam transport
are performed. The effects of large-amplitude charge-density

* and current oscillations on inducing mismatched beam enve-

lope oscillations are discussed, and use is made of the self-
consistent model to study the process of halo formation in a
high-intensity electron beam during high-power operation of
such a device. The results are compared with the SLAC PPM
focusing klystron amplifier t:xperiment.22 In Sec. IV, a solu-
tion to the steady-state cold-fluid equations presented in Sec.
11 is obtained, and generalized beam envelope equations for
equilibrium flow are derived. Examples of corkscrewing el-
liptic beam equilibria in a uniform magnetic field are pre-
sented. In Sec. V, a technique for controlling of the beam
halo and beam hallowing is developed and demonstrated as
an important application of the cold-fluid equilibrium beam
theory. Finally, conclusions are given in Sec. VL.

Il. MODELS AND ASSUMPTIONS

We consider a thin, continuous, space-charge-dominated
charged particle beam propagating with axial velocity Bycé,
through a linear focusing channel consisting of uniform so-
lenoidal magnetic focusing fields, periodic solenoidal mag-
netic focusing fields, and/or alternating-gradient quadrupole
magnetic focusing fields in an arbitrary arrangement. The
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fields can be tapered, and the quadrupole magnets are al-
lowed to be at various angles in the transverse direction. In
the thin-beam approximation, the focusing magnetic field is
expressed approximately as :

B™!(x,y,5)=B,(5)&— 1B (s)(x&+y8)
+ (0B 37)o(7&:+ X8;). , M

In Eq. (1), s=z is the axial coordinate, x; =x&,+y&, is the
transverse displacement from the z-axis in the laboratory
frame, the prime denotes a derivative with respect to s, X,
=Xe;+ & is the transverse displacement from the z-axis in
a frame of reference that is rotated transversely by an angle
of @, with respect to the laboratory frame, and (9B%/dy),
=(dB%/ 9%)¢ with subscript ‘‘zero’” denoting (¥,5)=0.

In the present analysis, we consider the transverse elec-
trostatic and magnetostatic interactions in ‘the beam. We
make the usual paraxial approximation, assuming that (a) the
Budker parameter is small compared with v,, ie,
q*N,/yymc*<1, (b) the beam is thin compared with the
characteristic length scale over which the beam envelope
varies, and (c) the kinetic energy associated with the trans-
verse particle motion is small compared with that associated
with the axial particle motion. In the following, we presant
steady-state cold-fluid equations describing equilibrium
beam propagation in the magnetic focusing field defined in
Eq. (1), and a two-dimensional self-consistent model de-
scribing the transverse dynamics of the beam.

A. Steady-state cold-fluid equations

For an ultrahigh-brightness beam, such as a high-
intensity heavy ion beam, kinetic (emittance) effects are neg-
ligibly small, and the beam can be adequately described by
cold-fluid equations. In the paraxial approximation, the
steady-state cold-fluid equations for time-stationary flow
(3/3t=0) in cgs units are

3 .
Bsc E;nb"'v.l.’(”bvi):oy . 2)

Vig =B, 'ViAj=—4mqn,, 3)

9 v 9 A\
T ony ﬂb03;+ Al

XB,(s5)&,|, @

1 ) A
- 7VJ. ¢+ By& XBo, + —
b

- where y,=(1—B2)"2, use has been made of B.=B,

=const, and the self-electric and self-magnetic fields E* and
B® are determined from the scalar and vector potentials ¢,
and A7, ie, E'=-V, ¢* and B°=VXA7e, . It will be
shown in Sec. IV that the steady-state cold-fluid equations
(2)—(4) support a class of solutions that, in general, describe
corkscrewing elliptic beam equilibria in the magnetic focus-
ing field defined in Eq. (1).
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B. Two-dimensional self-consistent model

For moderately high-brightness beams, such as electron
beams in high-power PPM focusing klystron amplifiers, ki-
netic (emittance) effects play an important role in the beam
dynamics, and the evolution of the phase space of such
beams must be studied. In the paraxial approximation, the
self-consistent electrostatic and magnetostatic interactions in
such a charged-particle beam can be described by a two-
dimensional model involving N, macroparticles (..,
charged rods). In the laboratory ﬁ'ame, the transverse dynam-
ics of the macroparticles is governed by!'>3%3!

dzx,- . dyx
yra +K4(s)(x;cos2¢,+y; sin 2(pq)—2\/l<z(s)71}—

N py s SR L P 5

d%y; dx
—d—-zl Kg(s)(—x;sin2¢,+y; cos2<pq)+2\/r<z(.s')z1

d q ¢ 4
+xi3;m+7—z—bﬁbmcza—o, R ©

where i=1,2,... ,Np, and the focusing parameters «,(s)
and k,(s) and self-field potential ¢*(x;,y;,s) are defined by

gB(s) Q)

\/-I;;(—S)_’_‘ ZYb.BmeZ_ ZBbC ’ (7)
__ 4 ( 53%) o
) B\ ), ©
¢ (xi>yi5)
N
_g_ J ( '—x]) +(yz yj)
- Np j= %#x) ln( Xi—X; 2/72)2+()’| yjrw/rz)z
—"‘—ln[(x =X/ T2+ (yi—yirs/rd)?, )

respectively. Here, (2.(s) is the (local) relativistic cyclotron
frequency associated with the axial magnetic field B (s), and
r; -—(x +y; )12, The beam is assumed to propagate inside a
perfectly conducting cylindrical tube of radius r,,, such that
the self-field potential satisfies the boundary condition
¢°(r;=r,,,s)=0. Note that the parameter \'x,(s) can be
positive, negative, or zero at any given axial position.

The two-dimensional self-consistent model described by
Egs. (5) and (6) will be used to simulate equilibrium beam
transport in a PPM focusing field in the absence of a rf signal
and electron beam halo formation in the transverse direction
induced by large-amplitude longitudinal current oscillations
in a PPM focusing klystron amplifier (Sec. III). It will also
be used to verify cold-fluid corkscrewing elliptic beam equi-
libria in a linear focusing channel consisting of uniform so-
lenoidal magnetic focusing fields, periodic solenoidal mag-
netic focusing fields, and/or alternating-gradient quadrupole
magnetic focusing fields in an arbitrary arrangement, and to
demonstrate control of halo formation and beam hollowing
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TABLE L SLAC 50 MW, 11.4 GHz, PPM focusing klystron experiment.

C. Chen and R. Pakter

TABLE IL System parameters used in the simulation.

Beam current [, 190 A
Beam voltage 464 kV
Cathode radius 2.86 cm
Cathode temperature T, 800°C*
Beam radius 2.38 mm"
Pipe radius 4.7625 mm
Total tube length 90.0 cm
Focusing field period length 2.1 cm
PPM focusing section length 42.0 cm
RMS axial magnetic field 1.95 kG

* *Estimated.

in a rms-matched ultrahigh-brightness ion beam as it is in-
jected from an axisymmetric Pierce diode into an alternating
gradient focusing channel (Sec. V). :

Iil. ELECTRON BEAM HALO FORMATION IN PPM
FOCUSING KLYSTRONS

In this section, we study the dynamics of relativistic
electron beams in high-power PPM focusing klystron ampli-
fiers. Of panicular interest are the properties of equilibrium
beam transport in the absence of a rf signal and the mecha-
nism for electron beam halo formation during high-power
operation of such a device. To make comparisons, with ex-
periment, the following analysis is carried out with system

parameters corresponding to those in the SLAC 50 MW,

' 11.4 GHz PPM focusing klystron experiment.22

A. Equilibrium beam transport

In the absence of a rf signal, the relativistic electron
beam propagates through the PPM focusing field in an equi-
librium state. It has been shown previouslyz‘s'27 that one of
the equilibrium states for the system described by Egs. (5)
and (6) is the rigid-rotor Vlasov equilibrium in which the
beam density is uniform transverse to the direction of beam
propagation. The outermost beam radius 7,(s)=rp(s+S)
obeys the envelope. equation,”®

d*r E (P (4¢)?
d—§+xz(s)r,,— —— = ——=0, (10)
Ay Iy rb rb

where v, Bym.c{ P g) = constant is the macroscopic canonical
angular momentum of the beam at r=ry(s), and € is the
unnormalized transverse rms emittance associated with the
random motion of the electrons. If there is no magnetic field
at the cathode, then (P g)=0. Any residual magnetic field at
the cathode will lead to (£ ) #0.

We analyze the beam envelope for equilibrium beam
transport in the SLAC 50 MW, 11.4 GHz PPM focusing
Kklystron experiment.22 The system parameters of the experi-
ment are shown in Table . To examine the influence of a
small residual magnetic field on the beam transport, we ana-
lyze two different cases shown in Table II. In Case I, we
assume no residual magnetic field at the cathode, such that
(Pg)=0. In Case II, however, a residual field of 6.86 G is
assumed, corresponding to a beam with a finite canonical
Vs Bym (P g)=4.5

angular momentum  given by

Basic parameter Case I Case I
Beam current [, 190 A 190 A
Beam voltage 464 kV 464 kV
Cathode radius 2.86 cm 2.86 cm
Residual magnetic field at cathode 00G 6.86 G
Cathode temperature T, 800°C 800°C
Beam radius 2.05 mm 2.38 mm
Pipe radius 9.0 mm 9.0 mm
Total tube length 90.0 cm 90.0 cm
Focusing field period length 21cm 2.1 cm
PPM focusing section length 42.0cm 420cm
RMS axial magnetic field 1.95 kG 1.95 kG

%X 10~26Kgm?s. The following dimensionless parameters
are derived from Table Il S2xk,(s)=[1.04XsinQms/S)f
(with S=2.1cm), 0(=42.3°=0.738, SK/d0ope=10.1, and
(Pg)/4e=0.0 in Case I and (Pg)/4€=6.93 in Case IL.

Figure 1 shows plots of the axial magnetic field B,(s)
and outermost beam radius 7,,(s) versus the propagation dis-
tance s for Cases I and IL In both cases, the amplitude of
well-matched (equilibrium) envelope oscillations about the
average beam radius is only about 0.005 mm, as seen in Figs.
1(b) and 1(c). )

Self-consistent simulations based on the model described
in Sec. II B are performed to further investigate the equilib-
rium beam transport. In the simulations, 4096 macroparticles
are used. The macroparticles are loaded according to the
rigid-rotor Vlasov distribution’® with an initial beam radius
equal to the equilibrium (matched) beam radius at s=0 [see
Figs. 1(b) and 1(c) for Cases I and II, respectively].

Figure 2 shows, respectively, the initial and final phase-
space distributions at s=0.0cm and s=42.0cm for Case L
The final distribution in the configuration space shown in
Fig. 2(d) agrees very well with the initial distribution shown
in Fig. 2(a), and the effective beam radius obtained from the
simulation agrees with that obtained from Eq. (10) within
0.2%. In the simulation, no beam loss is detected. A com-
parison between the final phase-space plots in Figs. 2(e)-and
2(f) and the initial phase-space plots in Figs. 2(b) and:2(c)
shows a slight emittance growth. This is because of numeri-
cal noise in the simulation. Nevertheless, the emittance
growth has little effect on the beam transport properties be-
cause the beam transport is dominated by space charge.
Similar results are also obtained for Case 11,2 showing pres-
ervation of the initial distribution and no beam loss. In both
cases, we find that the equilibrium beam transport in the
PPM focusing klystron is robust, and that there is no beam
loss in the absence of a rf signal. Within the experimental
error, these results are in good agreement with the experi-
mental observation®? of 99.9% beam transmission in the ab-
sence of a rf signal.

B. Halos induced by large-amplitude current
oscillations '

Microwave generation in a klystron is due to the cou-
pling of large-amplitude charge-density and current oscilla-
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FIG. 1. Plots of the axial magnetic field in (a) and outermost beam radius
r,(s) versus the propagation distance s for equilibrium beam propagation
corresponding to Case I in (b) and Case I in (c). The dimensionless param-
eters are S%k,(s)=[1.04Xsin@ms/S)P, 0,=423°=0.738, SK/dooe

=10.1, and (P 4)/4e=0.0 in (b) and (Pz)/4e=6.93 in (c).

tions in the electron beam with the output rf cavity or struc-
ture. The charge-density and current oscillations result from
the beating of the fast- and slow-space-charge waves on the
electron beam, and are primarily longitudinal. From the point

T of view of beam transport, the charge-density and -current

oscillations perturb the equilibrium beam envelope. Al-
though a quantitative understanding of the effects of such
_large-amplitude charge-density and current oscillations on
_the transverse dynamics of the electron beam requires three-

-~ dimensional modeling which is not available at present, a

qualitative two-dimensional study of such effects is pre-
sented in the remainder of this section.

The amplitude of the envelope mismatch induced by lon-

_ gitudinal current oscillations can be estimated using the stan-

dard one-dimensional fluid model based on the continuity,

Lorentz force, and full Maxwell’s equations. It follows from

the linearized continuity equation that the current perturba-
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FIG. 2. Plots of the initial and final particle distributions at s=0.0 and 42.0
cm for the equilibrium beam corresponding to the parameters in Case L

tion (6l,)s, is related to the axial velocity perturbation
c(8Bp)ys bYH

(8lp)ss w (6Bb)f.s
I, w=Byckss By (11).

where subscripts f and s denote the fast- and slow-space-
charge waves, respectively, and w and k;  are the frequency
and wave numbers of the perturbations, respectively. Making
the long-wavelength approximation for a thin beam, it can be
shown that the dispersion relations for the fast- and slow-
space-charge waves can be expressed as> :

n

Veo

w=Bycks = :——fn 2 (12)

where kg assumes a plus sign, and k, assumes a minus sign.
In Eq. (12), € is the longitudinal space-charge coupling
parameter. The effective value of € is estimated to be ¢
=0.012 for the SLAC PPM focusing klystron.? In the kly-
stron, the total current oscillations are the sum of fast- and
slow-space-charge waves with a phase difference of ~180°.
As a result, the total current oscillations and the total velocity
oscillations are out of phase by ~180°. Therefore, the am-
plitude of the total current oscillations is given by




2208 Phys. Plasmas, Vol. 7, No..5, May 2000 C. Chen and R. Pakter
~ (@)s=34.7 am o2 (f)5=34.7em @20 () s=34.7 cm
o517 o.lof o.10f
- ] - 1
§ oo 5000t T gooof -
S 3 - ‘: % :
o] .10} ant
L 00 o5 10 %o o oo o5 10 %P6 o5 o0 o5 10
x(cm) x (cm) x (cm)
9 oesm » . @s=38em o2 "Ms=378cm
o] - __odof - _oaop ;
@ | :
S odf 0.09] g 0.00f
~ 3 3
0.5 -0.10| 3 -0.10]
"-I.D -0‘.7 0.0 05 1.0 <. 1.0 £5 0:0 X} 1.0 2. -1.0 0.5 ﬁjﬂ 0.5 10
X ‘cm) . x{cm) x(cm)
! pRyan syt By poparapeat B () s=42.0m
ot . .10 s T o109 =2,
. SRR 1% i
8 00 g 999 g% FIG. 3. Plots of particle distributions in phase space at
> 3 . S s=34.7, 37.8, 42.0, 4.1, and 46.2 cm for Case L
05| .10 S faF .10
AGT T 0 o5 1o *Po o5 oo o5 10 Y
x(cm) x (cm)
1 0. a2
(d) s=44.] cm| @)y s=44.l1cm
oSt ~ 0.10] — D..IO 03
g
g g gt
o oot 5 0.00] 5 200
> 3 2
0.5 -0.10] o.101
-l'-l.ﬂ 0.5 00 . 0:5 10 a2 1.0 05 0.0 03 1.0 e -1.0 -d‘.’ ﬂ‘ﬂ 05 1.0
x(cm) x (cm) x(cm)
! dezem (G s=d6zcm - (0) $=46.2 cm
osf L S oo PR
= 2 3 SR
8 o9 5 oo} g om0 i~
<> - © e
» 3 2 S
0.5 -0.10) 0.10|
AT e o5 10 %o a5 oo o5 10 0 s o0 05 Lo
x{cm) x(cm) x(cm)
(81,) 2%, ﬁzz, (8 'Bb)m;ﬂ the relative amplitude of beam envelope mismatch is esti-
; toal = B, (13)  mated to be Sr,/r,=0.56, where r} is the equilibrium beam
n Vésc b radius and 81, /I, =1 is assumed. In the self-consistent simu-

This has the important consequence that the perveance of the
electron beam varies dramatically along the beam during
high-power operation. From the definition of the perveance,
ie, K=2e*N,/ 'y?,ﬂﬁmecz, it is readily shown that the am-
plitude of perveance variation is given by

£I£=(l+ 3717‘/5—&;) (511;):0(31‘

K 28, | I

For the SLAC PPM focusing klystron, Eq. (14) yields
SKIK=1.45X(8I,)om/I»- At the 1f output section, 6K/K
exceeds unity considerably because SI,/I,~1. (Note that
the current oscillations are highly nonlinear in the rf output
section and the maximum current exceeds 2/, during high-
power operation.) From the beam envelope equation (10),

(14)

lations presented below, we use 8r;,/r,=1.0 in order to take
into account the fact that the instantaneous current exceeds
21, during high-power operation of the klystron.

The process of halo formation in intense electron beams
is studied using the two-dimensional self-consistent model
described in Sec. IIB. In the simulations, 4096 macropar-
ticles are used, and the macroparticles are loaded according
to the rigid-rotor Vlasov distribution?® with an initial beam
radius of 2r,(0), where r,(0) is the equilibrium beam ra-
dius at s=0 [see Figs. 1(b) and 1(c) for Cases I and Ii,
respectively]. The effect of current oscillation build up in the
PPM focusing klystron, which requires three-dimensional
modeling, is not included in the present two-dimensional
simulation. In the limited space of this paper, we discuss
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only the results of the self-consistent simulation for Case I,
although the effect of a small residual magnetic field at the
cathode in the halo formation process is also studied for Case
II and is reported elsewhere. >

Figure 3 shows the phase-space distributions of the elec-
trons at several axial distances during the fourth period of the
beam core radius oscillation for Case I In contrast to the
equilibrium phase-space distribution (Fig. 2), significant ha-
los appear at s=34.7, 37.8, 42.0, 44.1, and 46.2 cm. In the
configuration space plots shown in Figs. 3(a)-3(e), we ob-
serve a large variation in the beam core radius during the
mismatched envelope oscillation period. The halo particles

“reach a maximum radius of r,=64mm at s=42.0cm,

where the beam core radius is a minimum and the traveling-
wave rf output section is located. Around 1.5% of the elec-
trons are found in the halo at that axial position. Because the
maximum halo radius of r,=6.4mm is greater than the ac-
tual beam tunnel radius r+=4.7625 mm, these halo electrons
are lost to the waveguide wall. Therefore, the simulation re-
sults show that there will be 1.5% beam electron loss. In
terms of beam power loss, 1.5% beam electron loss in the
simulation corresponds to 0.2% beam power loss because the
lost electrons have given up 88% of their kinetic energies (or
have slowed down by about a factor of 2 in their axial ve-
locities). The simulation results agree qualltatJvely with
0.8% beam power loss observed in the experiment.22 *The
discrepancy between the simulation and experimental mea-
surements may be caused by nonlinearities in the applied
magnetic fields which are not included in the present simu-
lation.

As the beam propagates in the focusing field, its distri-
bution rotates clockwise in the (x,dx/ds) phase space, as
shown in Figs. 3(f) to 3(j). The particles are initially dragged
into the halo at the edges of the phase-space distribution,
where a chaotic region is formed around an unstable periodic
orbit that is located just outside the beam distribution.’® The
unstable periodic orbit is a result of a resonance between the
mismatched core envelope oscillations and the particle dy-
namics. As the halo particles move away from the beam
core, the influence of space-charge forces decreases and
these halo particles start rotating faster than the core par-
ticles, creating the S-shaped distributions observed in Figs.
3(f) to 3()-

The halo formation is also observed in the (x,dylds)
phase-space distributions shown in Figs. 3(k) to 3(0). Al-
though the macroscopic (average) canonical angular momen-

tum (P ) is constant in the simulation, the distributions pre-
sented in Figs. 3(k) to 3(o) indicate that the distribution of

single particle canonical angular momenta induces spread in

the (x,dy/ds) phase space.

" Figure 4 shows the halo radius and effective beam core
radius as a function of the propagation distance for Case I.
The halo radius is the maximum radius achieved by all of the
macroparticles in the self-consistent simulation. It is appar-
ent in Fig. 4 that the halo formation process takes place
essentially during the first 4 periods of the envelope oscilla-
tions. After reaching r,= 6.4 mm at s=42.0cm, the halo ra-
dius saturates. It is interesting to note that once the halo is
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FIG. 4. Plots of the halo radius (solid curve) and core radius (déshed curve)
as a function of the propagation distance s for Case L

developed, the halo radius and core envelope radius oscillate
in an opposite phase, with the former being maximum when
the latter is minimum [as seen in Fig. 3(c)] and vice versa.

To summarize briefly, we studied equilibrium beam
transport in a periodic magnetic focusing field in the absence
of a rf signal and the behavior of a high-intensity electron
beam under a current-oscillation-induced mismatch between
the beam and the magnetic focusing field. Detailed simula-
tion results were presented for choices of system parameters
corresponding to the SLAC 50 MW, 11.4 GHz periodic per-
manent magnetic (PPM) focusing klystron experiment.> We
found that in the absence of the rf signal, the equilibrium
beam transport is robust, and that there is no beam loss in
agreement with experimental measurements. During the
high-power operation of the klystron, however, we found
that the current-oscillation-induced mismatch between the
beam and the magnetic focusing field produces large-
amplitude envelope oscillations whose amplitude is esti-
mated using a one-dimensional cold-fluid model. From self-
consistent simulations, we found that for a mismatch
amplitude equal to the beam equilibrium radius, the halo
reaches 0.64 cm in size and contains about 1.5% of total
beam electrons at the rf output section for a beam generated -
with a zero magnetic field at the cathode. In terms of beam
power loss, 1.5% beam electron loss in the simulation corre-
sponds to 0.2% beam power loss because the lost electrons
have given up 88% of their kinetic energies, which agrees
qualitatively with 0.8% beam power loss observed in the
experiment.”

IV. CORKSCREWING ELLIPTIC BEAM EQUILIBRIA

In this section, we show that there exists a class of so-
lutions to the steady-state cold-fluid equations (2)—(4) which,
in general, describe corkscrewing elliptic beam equilibria®
for ultrahigh-brightness, space-charge-dominated beam
propagation in the linear focusing channel defined in Eq. (1). -

We seek solutions to Egs. (2)—(4) of the form>

N, [ 2 yz
%)= e O @) T e

(15)
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Vo (%, ,8) =[ ()T~ ax(s)7)Bycs+[1y(5)F

+ a,(5)X]Bycey. (16)

In Egs. (15) and (16), x, =%&;+ 7&; is a transverse displace-
ment in a rotating frame illustrated in Fig. 5; 6(s) is the
angle of rotation of the ellipse with respect to the laboratory
frame; ©(x)=1 if x>0 and ®(x)=0 if x<0; and the func-
tions a(s), b(s), p:(5), By(s), ay(s), ay(s), and O(s) are
to be determined self-consistently.

Substituting Eqgs. (15) and (16) into Eq. (2) and express-

ing the result in terms of the tilde variables, we find *

DRMERCINE X MW

b’ 7* b6 ad’ ba, aa)\iy
+(7"‘y)57+(‘—"+77+ "5 Jab

X a1 il 5,‘2—0
275"

where the ‘prime’ denotes a derivative with respect to s,
8(x)=d®O(x)/dx, and use has been made of the identities
9%13s=0'y, 9y/ds=—0'%, and V-F=09F;/9x+ dF5/3y
for any vector field F. Since Eq. (17) must be satisfied for all
¥ and ¥, the coefficients of the terms proportional to 0, 226,

726, and 56 must vanish independently. This leads to the
following equations:

(17)

1 da _l db
P=2ds MThas (18)
dﬁ_azoz),—bzax )

where the functions a(s), b(s), a,(s), and a,(s) still re-

_ main to be determined.

Solving for the scalar and vector potentials from Eq. 3,
we obtain

S—plAS—
¢'=By A a+b b (20)
- in the beam interior with ¥%/a®+ 5%/b*<1. In deriving Eq.
(20), use has been made of V2 = §%/95>+ 3%135*
To solve the force equation (4) we substitute Egs. (15),
(16), (18)—(20) into Eq. (4), express the results in terms of

2gN, (®* §7°
qb(f_+_y_)
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the tilde variables, and use the relations 9%/ds=8'y, d5/ds
=—0'%, 9&;/9s=0'&;, and d&5/9s=— 0'€&;. We obtain

{fet rgcos[2(6— @) [} —{g,+ Ky sin[2(6— ¢ ) 1}7=0,
(21a)

{g:— kg sin[2(0— @) IT+{fy— K, cos[2(8— ¢,) ]}7=0,
(21b)

in the X and ¥ directions, respectively. In Eq. (21),

=l d%a _bz(af—2a,ay)+aza§_2 \/.___ 2K
*" g ds? a*—b* VK a(a+b)’
‘ (22a)

1 d%* az(ai—ZaXay)-i-bzaf 2K
fy—;;gr‘*‘ Sy —2a,\K,— ba+h)’
(22b)

a’b(a,

{—s-[bZ(am/T«Z)] —z—b%) = ( )} (220)

b3 -
[-—[az(a +ik) 1~ %;ﬁ%(%)}__ “(229)

Since Egs. (21a) and (21b) must be satisfied for all ¥ an(i ¥,
we obtain the generalized beam envelope equations,

1
&=

1
i

fxtrgcos[2(0—¢,)]=0,

fy—rgcos[2(6—¢,)]1=0, (23b)
8yt Kgsin[2(6—,)]=0, (23¢c)

8x— Kgsin[2(8—¢,)]=0. (23d)

Making use of Eq. (22), we can express the generahzed beam
envelope equations as®

2

ZT;+[Kq(S)COS[2(0_¢q)] a _b2
2K
——Zay\/;;}a" G‘_'_—b)=0, (242)
b | Hal-2a, b2el
;Ef+{—xq(s)cos[2(e—soq)]+a e AL
: 2K
_2ax‘/-'(—z]b—(a_+-55=0v (24b)
a’b(a,—ay) d (b
—[bz(ax"' Vi) 1= —"T—bz——g's'(;)
+k,(5)b? sin[2(6— ¢,)]=0, (24¢)
d ab*(a,—a,) d
2 ey - 2
—ky(s)a® sin[2(6- ¢,)]=0, (24d)
do a’a —bzax .
& a0 (24c)
_lda '
Hx=7 7o (24D

232)
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Equations (18) and (19) are added here as Egs. (24¢)-(24g)
for completeness. Equations (24a)—(24g), together with the
density and velocity profiles defined in Egs. (15) and (16),
describe cold-fluid equilibrium states for variably focused
ultrahigh-brightness beams.

A wide variety of cold-fluid beam equilibria can be con-
structed with Egs. (15), (16), and (24) for proper choices of
magnetic focusing field profiles. While cold-fluid beam equi-
libria are elliptic and corkscrewing in general, they do re-
cover familiar beam equilibria in proper limits. In particular,
such limiting cases of cold-fluid elliptic beam equilibria in-
clude (a) the familiar cold-fluid round rigid-rotor beam
equilibrium?- -25 in a uniform magnetic focusing field with
Kk (s)=const#0, K (s)=0, 0(s)=0, a(s)=b(s)=const,
and a,(s) = a,(s)=const as discussed in more detail below,
(b) the familiar round rigid-rotor Vlasov beam
equilibrium?®~28 in a periodic solenoidal focusing field in the
zero-emittance limit with x,(s)=k,(s+S)#const, k,(s)
=0, O(s)=0, a(s)=a(s+S)=b(s)#const, and a,(s)
= a,(s)# const and (¢ the familiar Kapchinskij—
Vladimirskij beam equilibrium® in an alternating-gradient
quadrupole magnetic focusing field in the zero-emittance
limit with &, (s)=0, K (s)=kK,(s+S)#const, O(s)= 0
a(s)=a(s+S), b(s)= b(s+S), and a,(s)=a,(s)= =0. Fur-
thermore, for 6(s)=0 and a,(s)=a,(s)=0, the present
corkscrewing elliptic beam equilibria also recover geomem-
cally nonrotating beam equilibria reported recently.>®

As a simple example, we consider corkscrewing elliptic
beam equilibria in a uniform magnetic field with B*™
=B,o€,. Setting VK ()= \/I—(z_o qB, o/2vsBymc?=const
and x,(s)=0, it can be shown that Eq. (24) has the follow-
ing two branches of physically acceptable special solutions:

(24g)

2\ 12 K ]1/2
= = —x- y 25
a=q (a,) [xzo—<a,+\/~_w)(ay+\/x_w) @)
12 12
= =2 K 25b
b= (a) Lzo—w,wx_zo)(aywx;)] =
o) =wr5= L s+ 60) (250)

X

for branch A, and

ay+2Vio) | ro— (st Vi) @y + Vi) ]

(26a)
ay+2\/—K_z(;) 127 K 112
.Kzo_(ax+ VKzo)(ay+ VKzO)_ ’

(26b)

a.a, -4k,
B(s) = wps= —=2 KD 1 oo, (26¢)
(s)=w; ayta, + 4\

for branch B. In Egs. (25) and (26), both a, and «, are
constant.
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FIG. 6. Regions in the parameter space for the confinement of corkscrewing
elliptic beam equilibria in a uniform magnetic field.

For branch A, the conditions for the confinement of
corkscrewing elliptic beam equilibria are

a,<0, a,<0, and (ax+\/Kzo)(ay+\/Kzo)<Kzo, 7

for positively charged particle beams with - Vkg
=gB,0/27),Bymc?>0, and

,>0, @,>0, and (a,+ \/Kzo)(ay+ VK 0) <Kz -
(28)

for negatively charged particle beams with kg
=—|q|B0/27,Bpmc?<0. Because a, and a, have the same
sign, the internal flow for branch A is always rotation-like.

For branch B, the conditions for the confinement of
corkscrewing elliptic beam equilibria are

ay>—2\]Kzo, ax>—2\/;z;,

and (29)

(ay+ Vi) (ay+ i) <Ky,

for positively charged particle beams with kg
=gB o/27,B,mc?>0, and '

ay<—2\/l<zo, a,<—2K,0,
and (30)
(ax+ VKZO)('aly+ VK20)<Kz0a -

for negatively charged particle beams with \/7(;
= —|q|B /27, B,mc?<0. In contrast to the internal flow for
branch A, the internal flow for branch B can be either.
rotation-like with a, and a, in the same sign, or quadrupole-
flow-like with a, and a, in the opposite signs.

Figure 6 shows the regions in parameter space for the
confinement of corkscrewing elliptic beam equilibria in a
uniform magnetic field applicable for both positively and
negatively charged particle beams. It is important to point
out that the familiar cold-fluid round rigid-rotor beam
equilibria”'25 are recovered in the present analysis by set-
ting a,= a, in either Eq. (25) or Eq. (26), as indicated by the
dark solid line shown in Fig. 6.

V. CONTROL OF HALO FORMATION AND BEAM
HOLLOWING

As discussed in the Introduction, one of the key mecha-
nisms for halo formation in high-intensity electron or ion
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beams is due to a mismatch in the particle phase-space dis-
tribution relative to an equilibrium distribution. In general,
distribution mismatch can lead to rather complex evolution
in a beam, including not only halo formation but also beam
hollowing. This mechanism for halo formation and beam
hollowing occurs for rms matched beams because rms beam
matching does not necessarily guarantee the beam in an equi-
librium state.

For example, both halo formation and beam hollowing
were observed in the heavy ion beam injector experiment at
Lawrence Berkeley National Laboratory (LBNL),"? in which
an ultrahigh-brightness, space-charge-dominated potassium
ion beam was generated with an axisymmetric Pierce diode
and then accelerated by a set of electrostatic quadrupoles.
More recently, experimental evidence of beam hollowing
was found in a high-brightness, space-charge-dominated
electron beam experiment at the University of Maryland.>"?8

As an important application of the equilibrium beam
theory presented in Sec. IV, we develop and demonstrate a
technique for controlling of beam halo formation and beam
hollowing in ultrahigh-brightness beams. This technique is
widely applicable in the design of ultrahigh-brightness
beams, and is effective before any collective instability de-
velops to reach considerably large amplitudes.

To demonstrate the efficacy of this technique, we con-
sider here a specific example, namely, the matching of a
round particle beam generated by an axisymmetric particle

source into an alternating-gradient magnetic quadrupole fo- .

cusing channel. For comparison, we analyze two non-
rotating rms matched beams with the same intensity; one
beam will be in equilibrium and the other beam has an initial
perturbation about the equilibrium transverse flow velocity.
At the entrance of the alternating-gradient magnetic focusing
channel (s=0), both beams have the same density profile
defined in'Eq. (15), but the transverse flow velocities of the
beams are of the form®'

dx, x; (da)

ds al\ds
where v is a parameter that measures the nonlinearity in the
velocity profile. For example, an initial velocity profile with
v>0 in Eq. (31) may model the effects of the concave shape
of a Pierce-type ion diode." For equilibrium beam propaga-
tion, »=0. o

The rms matching is obtained by numerically solving the
rms envelope equations,

1+u(1—2i;;ﬁ)], 31)

izz+l< (s)a— =Q, (32a)
s> * 2(a+b)

2_ —

a7 o2

where @=(x?)"? and b=(y?)""? are the mms envelopes, (- **)
denotes average over the particle distribution, and emittance
terms are neglected. For given beam intensity K and focus-
ing channel parameters C3 and % shown in Fig. 7, we make
use of Eq. (32) to determine the injection parameters for the
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FIG. 7. Plot of the focusing parameter 52 K, as a function of the propagation
distance s.

axisymmetric beam, namely, @(0), b(0), @’ (0), and 5'(0),
as well as the strengths of the two quadrupoles centered at
s=8/4 and s=3S/4 in the first lattice, C, and C,, as shown
in Fig. 7, assuming all quadruples having the same width »

and equally spaced. Because Eq. (32) has a unique solution
for a“rms matched beam in the constant-parameter
alternating-gradient focusing section with s/$>1, integrating
Eq. (32) from s=S to s=0 yields four implicit functions:
a(C,,C,), b(C,,Cy), @'(C,,Cy), and b'(Cy,C). The

" conditions for an initially converging round beam, ie.,

@(0)=b(0)=a(0)/2=b(0)/2 and a’(0)=>5"(0), uniquely
determine the parameters C; and C,, which is done numeri-
cally with Newton’s method. The results are presented in
Figs. 7 and 8.

Figure 7 shows the focusing field parameter Szxq asa
function of s, where =0.3, C,=2.31, C,=7.44, and C;
=10.0. In Fig. 8, the solid and dashed curves show, respec-
tively, the rms matched envelopes a(s) and b(s) for the
focusing channel with vacuum phase advance oy =70.8° and
beam perveance SK/4€(0)=16.0 (corresponding to a space-
charge-depressed phase advance of 0=5.4°), where a neg-
ligibly small unnormalized rms emittance of €(0)=0.15
X 10~% m-rad has been assigned to the beam at s=0.

2.5

<
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— b
0.5 ® G (simulation)
© b (simulation)
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0.0
0.0 1.0 20 3.0

s/S

FIG. 8. Plots of rms beam envelopes versus propagation distances. Here, the
solid and dashed curves are obtained from Eq. (32), whereas the solid dots
and open circles are from the self-consistent simulation for a beam with »

=0.25. Here, @ and b are normalized to ve(0)S.
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FIG. 9. Particle distributions in the configuration space for »=0 (left) and
»=0.25 (right). Here, the coordinates x and y are normalized to Ve(0)S.

Self-consistent simulations are performed with N,
=3072 and free-space boundary conditions to study the
phase-space evolution for the two beams in the focusing
channel shown in Fig. 7. In Fig. 8, the solid dots and open
circles correspond to the rms envelopes @(s) ‘and b(s) ob-
tained from a self-consistent simulation for a beam initially
with a nonlinear velocity profile with »=0.25. 1t is evident
in Fig. 8 that there is excellent agreement between the pre-
diction of the rms envelope equations (32a) and (32b) and
the results of the self-consistent simulation, despite that the
; transverse flow velocity is perturbed substantially.

We now examine the evolution of the particle distribu-
: tion if the nonlinearity in the initial transverse flow velocity
: profile is introduced, and compare with equilibrium beam
7 propagation. The results are summarized in Figs. 9 and 10.

Figure 9 shows a comparison between particle distributions

in the configuration space with and without nonlinearity in

the initial transverse flow velocity at three axial positions:

h, s/S=0, 1.0, and 2.5. These axial positions are chosen such
that a(s)=>5(s). In Fig. 9, the plots shown on the left cor-
respond to »=0 and those on the right to »=0.25. For v
=(.25, the initially round beam develops sharp edges after
the first lattice, becoming partially hollow subsequently at
s/S=2.5. In Fig. 10(b), the radial distribution of 3072 mac-
roparticles at s/S=2.5 shows that the density at the edge is
twice the density at the center of the beam, and that there is
a small halo extending outward beyond the radius where the
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density reaches its maximum. The partially hollow density
profile shown in Fig. 10(b) is similar to, but not as pro-
nounced as, that observed in the heavy ion beam injector
experiment at LBNL."® In contrast to the case with »
=(0.25, the beam propagates in an equilibrium state for v
=0 without beam hollowing and without any significant
beam halo formation, as shown in Fig. 10(a).

VIi. CONCLUSIONS

Halo formation and control in space-charge-dominated
electron and ion beams have been investigated analytically
and computationally in parameter regimes relevant to the
development of high-power microwave (HPM) tubes and
high-intensity electron or ion linear accelerators. In particu-
lar, a mechanism for electron beam halo formation was iden-
tified in high-power periodic permanent magnetic focusing
klystron amplifiers, and a new class of cold-fluid corkscrew-
ing elliptic beam equilibria was discovered for ultrahigh-
brightness beam propagation in a linear focusing channel
consisting of uniform and periodic solenoidal and alternat-
inggradient quadrupole magnetic fields in an arbitrary ar-
rangement including field tapering.

In the exploration of electron beam halo formation in
PPM focusing klystron amplifiers, equilibrium beam trans-
port was analyzed in a periodic magnetic focusing field in’
the absence of a rf signal, and the behavior of a high-
intensity electron beam was studied under a current-
oscillation-induced mismatch between the beam and the
magnetic focusing field. Detailed simulation results were
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presented for choices of system parameters corresponding to
the SLAC 50 MW, 11.4 GHz periodic permanent magnetic
(PPM) focusing klystron experiment. It was found that in the
absence of a rf signal, that the equilibrium beam transport is
robust, and that there is no beam loss in agreement with
experimental measurements. During high-power operation of
the klystron, however, it was found that the current-
oscillation-induced mismatch between the beam and the
magnetic focusing field produces large-amplitude envelope
oscillations whose amplitude was estimated using a one-
dimensional cold-fluid model. Self-consistent simulations
showed that for a mismatch amplitude equal to the beam
equilibrium radius, the halo reaches 0.64 cm in size and con-
tains about 1.5% of total beam electrons at the 1f output
section for a beam generated with a zero magnetic field at the
cathode. Because the halo radius is greater than the actual
beam tunnel radius, these halo-electrons are lost to the wave-
guide wall, yielding 0.2% beam power loss. The simulation
results agree qualitatively with 0.8% beam’ power loss ob-
served in the expenment.22 The discrepancy between the
simulation and experimental measurements may be caused
by nonlinearities in the applied magnetic fields which are not
included in the present simulation.

In the analysis and applications of cold-fluid corkscrew-
ing elliptic beam equilibria, the steady-state cold-fluid equa-
tions were solved for an ultrahigh-brightness, spacg-eharge-
dominated beam in general magnetic focusing field profile
including periodic and uniform solenoidal fields and
alternating-gradient quadrupole magnetic fields. Generalized
beam envelope equations for equilibrium flow were ob-
tained. It was shown that limiting cases of cold-fluid cork-
screwing elliptic beam equilibria include the familiar cold-
fluid round rigid-rotor beam equilibrium in a uniform
magnetic focusing field and both the familiar round rigid-
rotor Vlasov beam equilibrium in a periodic solenoidal fo-
cusing field and the familiar Kapchinskij—Vladimirskij beam
equilibrium in an alternating-gradient quadrupole magnetic
focusing field in the zero-emittance limit. As a simple ex-
ample, a cold-fluid corkscrewing elliptic beam equilibrium in
a uniform magnetic focusing field was discussed. As an ap-
plication of the present equilibrium beam theory, a general
technique was developed, and demonstrated with an ex-
ample, for the controlling of beam halo formation and beam
hollowing in ultrahigh-brightness beams. This technique is
effective before any collective instability may develop to

reach considerably large amplitudes.
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It is shown that there exists a new class of cold-fluid corkscrewing elliptic beam equilibria for ultrahigh-
brightness, space-charge-dominated beam propagation through a linear focusing channel consisting of uniform
solenoidal, periodic solenoidal, and/or alternating-gradient quadrupole focusing magnets in an arbitrary ar-
rangement including field tapering. The equilibrium beam density and flow velocity profiles and equilibrium
self-electric and self-magnetic fields are determined by solving generalized beam envelope equations. In proper
limits, such cold-fluid corkscrewing elliptic beam equilibria recover many familiar beam equilibria in beam
physics, including the round rigid-rotor Vlasov beam equilibria in uniform and periodic solenoidal focusing
fields and the Kapchinskij-Viadimirskij beam equilibrium in an alternating-gradient quadrupole focusing field.
For beams with negligibly small emittance, the equilibrium solutions are validated with self-consistent simu-
lations. Examples and applications of the present equilibrium beam theory are discussed. As an important
application of the present equilibrium beam theory, a general technique is developed and demonstrated with an
example to control large-amplitude density and flow velocity fluctuations (such as beam hollowing and halo
formation) often observed in ultrahigh—brighmess beams.

PACS number(s): 29.27.—a, 41.75.—i, 41.85.—p

L INTRODUCTION

The equilibrium and stability properties of charged-
particle beams have been an important subject of investiga-
tion in beam physics, plasma physics, and vacuum electron”
ics. Indeed, the principles of vacuum electronics F1] are
based on electron beam interactions with radio-frequency
structures, and the discovery of strong focusing in the early
1950s [2] has provided the scientific basis for modemn par-
ticle accelerators such as synchrotrons, linacs, and high-
energy colliders.

Recently, there have been vigorous activities in the re-
search and development of high-intensity vacuum electronic
devices and high-intensity accelerators in order to meet the
needs in communication, in high-energy and nuclear physics
research, in the development of spallation neutron sources, in
heavy ion fusion applications, and in advanced x-ray radiog-
raphy, to mention a few examples.

In the design of high-intensity charged-particle beam sys-
tems, the most challenging task is to properly match high-
intensity beams into focusing systems, so that the beams are
in equilibrium or quasiequilibrium states in the combination
of applied fields and self-fields [3]. A widely used tool for
the determination of matching conditions of high-intensity
charged-particle beam systems is based on the rms beam
description [4-7]. However, rms beam matching is inad-

-equate for ultrahigh-brightness beams, because detailed in-

formation about the beam dynamics, especially the evolution
of the density and flow velocity profiles, is lost by perform-
ing phase-space averages in the rms analysis. In general, rms
“beam matching does not guarantee well-behaved beam trans-

__port if the beam becomes space-charge dominated. In fact,

without detailed equilibrium flow matching of high-intensity

*Present address: Instituto de Fisica, Universidade Federal do Rio
-Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS,

Brazil.

1063-651X/2000/62(2)/2789(8)/$15.00 PRE 62

beams, many undesirable phenomena can occur, including
chaotic particle motion [8] and chaotic beam envelope oscil-
lations [9], beam halo formation [10], beam hollowing [11],
emittance growth [12], and multimode excitations, as ob-
served in recent high-intensity beam experiments.

In this paper, we present exact steady-state solutions to
the cold-fluid equations goveming the evolution of an’
ultrahigh-brightness, space-charge-dominated beam propa-
gating through a linear focusing channel consisting of uni-
form solenoidal, periodic solenoidal, and alternating-gradient
quadrupole focusing magnets in an arbitrary arrangement in-
cluding field tapering. The equilibrium beam density and
flow velocity profiles and equilibrium self-electric and self-
magnetic fields are determined by solving generalized beam
envelope equations. For beams with negligibly small emit-
tance, these steady-state solutions are validated with self-
consistent simulations using the Green’s function method. In
general, these steady-state solutions comrespond to cork-
screwing elliptic beam equilibria. They recover many famil-
jar beam equilibria in beam physics, such as the cold-fluid
round rigid-rotor equilibrium [13,14] and both the periodi- -
cally focused rigid-rotor Vlasov equilibdum [15] and
Kapchinskij-Vladimirskij equilibrium [16] in the zero-
emittance limit.

Examples and applications of the present equilibrium
beam theory are discussed. As a simple example, a cork-
screwing elliptic beam equilibrium in a uniform solenoidal
magnetic field is obtained. As an important application of the
present equilibrium beam theory, a general technique is de-
veloped and demonstrated with an example to control large-
amplitude density and flow velocity fluctuations (such as
beam hollowing and halo formation) often observed in
ultrahigh-brightness beams. For comparison, we investigate
numerically the beam transport for distributions that substan-
tially deviate from the equilibrium solutions. In this case, the
occurrence of beam hollowing and halo formation is found. -
As a final example, we consider an ultrahigh-brightness
beam equilibrium in a periodic focusing channel consisting

2789 ©2000 The American Physical Society
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of overlapping solenoidal and quadrupole focusing fields to
illustrate a wide range of applicability of the present equilib-
rum beam theory in manipulating ultrahigh-brightness
beams. ' ,

The paper is organized as follows. In Sec. 11, steady-state
cold-fluid equations are presented for transverse electrostatic
and magnetostatic interactions in a high-intensity charged-
particle beam propagating through a linear focusing channel
with general magnetic focusing field profile. In Sec. III, an
equilibrium solution to the steady-state cold-fluid equations
presented in Sec. II is obtained and generalized beam enve-
lope equations for equilibrium flow are derived. In Sec. IV, it
is shown that the steady-state cold-fluid solutions found in
Sec. III recover familiar beam equilibria in proper limits. In
Sec. V, examples and applications of the present equilibrium
beam theory are discussed. Conclusions are given in Sec. VL

II. THEORETICAL MODEL AND ASSUMPTIONS

We consider a thin, continuous, ultrahigh-brightness,
space-charge-dominated beam propagating with constant
axial velocity B,cé, through a linear focusing channel with
multiple periodic solenoidal and alternating-gradient quadru-
pole focusing sections. The focusing fields can be tapered,
and the quadrupoles are allowed to be at various angles.in
the transverse direction. The focusing magnetic field is ap-
proximated by

1
Bo(x)=B,(s5)&,— -2-B£(s)(xéx+yéy)

+(8BL7)o(yez+ X&), (1)

‘where B,(s)=(9B,/95)¢, $=2 is the axial coordinate, X, ¥,

&, and &; are coordinates and unit vectors of a frame of
reference that is rotated by an angle of ¢, with respect to the
x axis in the laboratory frame, (0B§/87)0=(8B§/ d%)g, and
the subscript ‘‘zero’’ denotes (x,y)=0=(x,y).

In the present analysis, we consider the transverse elec-
trostatic and magnetostatic interactions in the beam. We
make the usual paraxial approximation, assuming that (a) the
Budker parameter is small compared with ,, ie.,
q*N,/yymc?<1, (b) the beam is thin compared with the
characteristic length scale over which the beam envelope

_ varies, and (c) the kinetic energy associated with the trans-

verse particle motion is small compared with that associated
with the axial particle motion.

For an ultrahigh-brightness beam, kinetic (emittance) ef-
fects are negligibly small, and the beam can be adequately

" described by cold-fluid equations. In the paraxial approxima-

tion, the steady-state cold-fluid equations for time-stationary
flow (4/9t=0) are

0J
Bye oot vV, «(n,V,)=0, (2)

Vig'=p, 'ViAi=—4mqn,, (3)
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np\ Boc 5o+ VL N v, = —;gvuﬁ +Bye, XBg,

~vem
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where x, =x&,+y¢,, ¥p,=(1— BZ)"W, and the self-electric
and self-magnetic fields E* and B’ are determined from the
scalar and vector potentials ¢, and Aj¢,, ie., E'=~V ¢’
and B*=V XA%¢,. In Sec. III, it will be shown that the
steady-state cold-fluid equations (2)-(4) support a class of
solutions that, in general, describe corkscrewing elliptic
beam equilibria in the magnetic focusing field defined in Eq.
(1).

III. CORKSCREWING BEAM EQUILIBRIUM

In this section, we show that there exists a class of solu-
tions to the steady-state cold-fluid equations (2)—(4) which,
in general, describe corkscrewing elliptic beam equilibria for
ultrahigh-brightness, space-charge-dominated beam propaga-
tion in the linear focusing channel defined in Eq. (1).

"We seek solutions to Egs. (2)-(4) of the form

B Nb x'Z 5,-2
(5.9 = e O T 2o ) ©

V,(x, ’s)=[l"'x(s)-x~_ ax(s)y]BbCéE'l'[ﬂy(s)y 3
+ a,(s)%]1Bscly. ®)

In Egs. (5) and (6), x, =%&;+7€; is a transverse displace-
ment in a rotating frame illustrated in Fig. 1, 6(s) is the
angle of rotation of the ellipse with respect to the laboratory
frame, ©(x)=1 if x>0 and ®(x)=0 if x<0, and the func-
tions a(s), b(s), p;(s), py(s), a,(s), a,(s), and 6(s) are
to be determined self-consistently.

Substituting Egs. (5) and (6) into Eq. (2) and expressing
the result in terms of the tilded variables, we find

a b’ 2y a’ x2
Sy b R e | P

be' “0'+bax_ﬂfz
b |a

N
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where the prime denotes derivative with respect to s, 6(x)
=d0O(x)/dx, and use has been made of the identities
9%/9s=0'y, dy/ds=—0'%, and V-F=0Fz/oXx+dF5/3y
for any vector field F. Since Eq. (7) must be satisfied for all
% and ¥, the coefficients of the terms proportional to ©, 26,
526, and ¥y 5, must vanish independently. This leads to the

following equations:

1da _l dab g

m=gdst M Thdse ®)

d_0_ _ azay—bzax ©
ds a?—b*

where the functions a(s), b(s), a,(s), and a,(s) still re-
main to be determined.

Solving for the scalar and vector potentials from Egq. (3),
we obtain

29N, (#* 5
q b(f__ y) (10)

s p-IAse .22 p
=B A= Tp\a T b
in the beam interior with ¥%/a?+5*/b?><1. In deriving Eq.
(10), use has been made of V2 =0%0%%+ 3% 35°.

To solve the force equation (4), we substitute Egs. (5),
(6), and (8)—(10) into Eq. (4), express the results in terms of
the tilded variables, and use the relations 9%/ds=0'y,
971ds=— 0'%, 3&;/95=0'&;, and d&;/9s=— 6'&;. We ob-
tain

{f:t+ Kq cos[2(6— <Pq)]}f"’{gy+ Kq sin[2(6— QPq)]}}-"'_‘Ov
(11a)

{g.— K, Sin[2(6— 9o lIF+{f,— x cos[2(6— "°")]}§(=1fb)

in the ¥ and 7 directions, respectively. In Eq. (11),

1 d%a bz(az—ZaXay)+a2a§ 2K
fs=5 37 a’—b? 2ay i~ a(a+b)’
(12a)

1d% az(a;—2a,ay)+b2a§ 2K
= as a—b* 2a i, b(a+b)’
(12b)

1{d : a’b(a,—a,) d (b
gy=;z[3s‘[b2(ax+\/7<:)]"7_jry—g(;)},

(12¢)

ab3(ax—a),) d|a
a?~br  ds\b/|’

1(d
gx=zl-f[z[az(ay+ \/K_z)]_
(124d)

Since Eqgs. (11a) and (11b) must be satisfied for all X and y,

we obtain the generalized beam envelope equations
fotKgcos[2(0—¢,)]=0, (13a)
fy“'KqCOS[Z(o"' ‘Pq)]=0$ (13b)

gy+Kq sin[2(6— ‘Pq)]=07 (13¢)
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8x Kq sin[2(6— ¢q)]=0- (13d)

Making use of Eq. (12), we can express the generalized beam
envelope equations as [17]

d%a bz(oz;z'-—Za,;ay)+az¢:z2
d—sz'}'[Kq(s)cos[z(o_‘pq)]_ aZ_bZ 2
2K
—Zay\/}_z]a—'(—a—_*_—b)':(), (14a)
d*b az(ag—?_axa).)‘*l-bzaf
ozt —Kky(s)cos[2(6— @) ]+ al—p2
. 2K
—ZaX&:}b—G-_;b—)=0, (14b)
d a’b(a,—a,) d (b
—Tp2 - *x Y |-
1= e 2]
+ Kk g(5)b? sin[2(6— ¢,)1=0, (14c)
d ab¥(a,—a,) d [a
a2 - LR JANiadly hud
priGHCRR ) n e, ds(b)
—kg(s)a? sin[2(6— ¢,)]=0, (14d)
dé azcry--bza‘,,_0 , :
s 2 g (lfe)
1 da
/“'x_;&?v ’ (14f)
1db
YT (14g)

Equations (8) and (9) are added here as Egs. (14¢)—(14g) for
completeness. Equations (14a)—(14g), together with the den-
sity and velocity profiles defined in Egs. (5) and (6), describe
cold-fluid equilibrium states for variably focused ultrahigh-
brightness beams.

IV. LIMITING CASES

A wide variety of cold-fluid beam equilibria can be con-
structed with Egs. (5), (6), and (14) for proper choices of
magnetic focusing field profiles. While cold-fluid beam equi-
libria are elliptic and corkscrewing in general, they do re-
cover familiar beam equilibria in proper limits. In this sec-
tion, we discuss some of these limiting cases.

First, let us consider the case of an axisymmetric beam in
a periodic solenoidal focusing field with k,(s)=k,(s+S)
#0, Kq(s)=0, and a(s)=a(s+S)=>b(s). In this limit, Egs.
(14¢)—(14e) imply that

d0_ __ &a
E;-ax—ay—m—\/&.m, (15) -

where g;=const is an unnormalized emittance associated
with beam rotation relative to the Larmor frequency V«,(s).
Equation (15) indicates that the beam rotates at a rate that is




2792 RENATO PAKTER AND CHIPING CHEN

a periodic function of the axial propagation distance 5. Sub-
stituting Eq. (15) into Eqgs. (14a) and (14b), setting a,
=a,, and taking the limit =5, it is readily shown that the
beam envelope equations reduce to

da K &g 16
E{'i‘Kz(S)a a—;g— . (16)

The equilibrium described by Eqgs. (5), (6), (15), and (16) is
identical to the familiar round rigid-rotor Vlasov beam equi-
librium [15] in the zero-emittance limit.

Second, in a uniform magnetic focusing field with . (s)
= K =const, Kq(s)=0, and a(s)=b(s), a special solution
to the beam envelope equation (16) is

K+ (K2+4k,e2) 2|2

a= Tr =const, (17)

and the equilibrium recovers the familiar cold-fluid round
rigid-rotor beam equilibrium [13,14]. A general class of
corkscrewing elliptical beam equilibria with constant radii
a#b in a uniform solenoidal focusing field is discussed in
detail in Sec. IV A.

As a third limiting case, we consider a nonrotating ellip-
tical beam in an alternating-gradient quadrupole focusing
field with «,(s)=0, Kq(S)=Kq(s+S), 8(s5)=0, a(s)=a(s
+5), b(s)=b(s+S), and a,(s)=a,(s)=0. In this case,
Egs. (14c)—(14e) are automatically satisfied and the envelope
equations reduce to

2a+ 2K —0 g
FEAR S T 1%
d*b ) K

Fr Ko(s)b— Py =0. (18b)

Note that the internal flow must satisfy a,(s)=a,(s)=0 in
order to prevent the beam from rotating with a finite délds.
The equilibrium described by Egs. (5), (6), and (18) corre-
spond to the familiar Kapchinskij-Vladimirskij beam equilib-
rium [16] in alternating-gradient quadrupole magnetic focus-
ing field in the zero-emittance limit.

V. EXAMPLES AND APPLICATIONS

In this section, we discuss three examples of cold-fluid
corkscrewing elliptic beam equilibria predicted by the equi-
librium beam theory presented in Sec. IV. These examples
are (a) cold-fluid corkscrewing elliptic beam equilibria in a
uniform magnetic field (Sec. V A), (b) matching and trans-
port of an ultrahigh-brightness round beam generated by an
axisymmetric particle source into an alternating-gradient
magnetic quadrupole focusing channel (Sec. VB), and (c)
matching and transport of an ultrahigh-brightness round
beam into a periodic focusing channel consisting of overlap-
ping solenoidal and quadrupole focusing fields (Sec. VO).

In addition to illustrating a large class of beam equilibria
predicted by the present equilibrium beam theory, these ex-
amples are also intended to demonstrate a general technique
for controlling of large-amplitude beam density and flow ve-
Incitv finctuations and associated emittance growth and beam
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halo formation often observed in ultrahigh-brightness beam
experiments. To demonstrate the efficacy of this beam con-
trol technique, the transport for an ultrahigh-brightness beam
with an initial perturbation about the equilibrium transverse
flow velocity is compared with the equilibrium beam trans-
port (Sec. VB).

A. Corkscrewing elliptic beam equilibria
in a uniform magnetic field
As a simple example, we consider corkscrewing elliptic
beam equilibria in a uniform magnetic field with B

=B¢,. Setting VK (s)= Kzo=qud27bBbmc2=comt
and Kq(s)=0, it can be shown that Eq. (14) has the follow-
ing two branches of physically acceptable special solutions:

Qx

i P rrex
SN ) | o= (et Vi) (@, + Vi) |

a 12 K 172
Ax KzO_(ax+ ‘/'_(:(;)(ay+ VKz())
0(s) = wys= — 5+ 6(0), (19)

x T &y

for branch A, and

a=a,

(a,+2JK,o) e K 1"

a,+ 2k | ko= (@t Vi) (@, + Vi) ’
b=b,
(a,+2 Kzo)"" K 1
B a,+2VKy _Kzo“(ax'*'\/:z_(;)(ay'*'\/l_fz—o). '
a,a,— 4K,

0(5) = w,s = ——————=s5+ 6(0), 20
() 2 ax+ay+4\/i(—zo () ( )

for branch B. In Egs. (19) and (20), a, and a, are constant.
For branch A, the conditions for the confinement of cork-
screwing elliptic beam equilibria are

a, I\k0<0, a,/\Kk<0,

(ax+ \/K—z())(ay+ \/K_ZO)<KZO (21)

for both positively and negatively charged particle beams.
Because a, and a, have the same sign, the internal flow for
branch A is always rotation like. For branch B, the condi-
tions for the confinement of corkscrewing elliptic beam equi-
libria are

ay/\/—i:z;>“2, a_‘/\/;;>-2,
(e + Vi) (ay+ \/:z-(-)')<KZO 22

for both positively and negatively charged particle beams. In
contrast to the internal flow for branch A, the internal flow
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FIG. 2. Regions in parameter space for confinement of cork-
screwing elliptic beam equilibria in a uniform magnetic field.

for branch B can be either rotation like with a, and a, in the
same sign or quadrupole flow like with a; and a, in apposite
signs. Figure 2 shows the regions of the confinement of cork-
screwing elliptic beam equilibria in a uniform magnetic field
applicable for both positively and negatively charged particle
beams. It is important to point out that the familiar cold-fluid
round rigid-rotor beam equilibria [13,14] are recovered in the
present analysis by setting a, = a, in either Eq. (19) or Eq.
(20), as indicated by the dark solid lire shown in Fig. 2.

B. Control of halo formation and beam hollowing .
in ultrahigh brightness beams .

As discussed in the Introduction, one of the key mecha-

nisms for halo formation in high-intensity electron or ion
beams is due to a mismatch in the particle phase-space dis-
tribution relative to an equilibrium distribution. In general, a
distribution mismatch can lead to rather complex evolution
in a beam, including not only halo formation, but also beam
hollowing. This mechanism for halo formation and beam
hollowing occurs for rms matched beams because rms beam
matching does not necessarily guarantee the beam in an equi-
librium state. .

For example, both halo formation and beam hollowing
were observed in the heavy ion beam injector experiment at
Lawrence Berkeley National Laboratory (LBNL) [11], in
which an ultrahigh-brightness, space-charge-dominated po-
tassium ion beam was generated with an axisymmetric
Pierce diode and then accelerated by a set of electrostatic
quadrupoles. More recently, experimental evidence of beam
hollowing was found in a high-brightness, space-charge-
dominated electron beam experiment at University of Mary-
land [18]. '

As an important application of the equilibrium beam
theory presented in Sec. IV, we develop and demonstrate a
technique for controlling of beam halo formation and beam
hollowing in ultrahigh-brightness beams. This technique is
widely applicable in the design of ultrahigh-brightness
beams and is effective before any collective instability de-
-velops to reach considerably large amplitudes.

To demonstrate the efficacy of this technique, we consider
here a specific example, namely, the matching of a round
particle beam generated by an axisymmetric particle source
into alternating-gradient magnetic quadrupole focusing chan-
nel. For comparison, we analyze two nonrotating rms
matched beams with the same intensity; one beam will be in
equilibrium, and the other beam has an initial perturbation
about the equilibrium transverse flow velocity. At the en-
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FIG. 3. Plot of the focusing parameter S%, as a function of the
propagation distance s.

trance of the alternating-gradient magnetic focusing channel
(s=0), both beams have the same density profile defined in
Eq. (15), but the transverse flow velocities of the beams are
of the form [19]

dxl _ X da ZXJ_ Xy >
E——(E)[l‘i'v(l——az-— , (23)

a

where v is a parameter that measures the nonlinearity in the
velocity profile. For example, an initial velocity profile with
v>0 in Eq. (23) may model the effects of the concave shape
of a Pierce-type ion diode in the LBNL 2-MV Heavy Ion

" Beam Injector Experiment [11]. The value of v in the LBNL -

experiment [11] is estimated to be »=0.25. For equilibrium
beam propagation, v=0.

The rms matching for both beams with v =0 and 0.25 is
obtained by numerically solving the rms envelope equations

[5]

d25+ (s)a 0 (24a)
—+x, (s)a— =0, a
dst ? 2(@+b)

il (s)5 0 (24b)
—_——KAS - =0,

s * 2(a+b) -

where @=(x*)"? and b=(y?)"? are the rms envelopes, (- --)
denotes average over the particle distribution, and emittance
terms are neglected. For given beam intensity X and focusing
channel parameters C3 and % shown in Fig. 3, we make use
of Eq. (24) to determine the injection parameters for the
axisymmetric beam, namely, @(0), b(0), @’(0), and 5’(0),
as well as the strengths of the two quadrupoles centered at
5=5/4 and s=35/4 in the first lattice, C; and C,, as shown
in Fig. 3, assuming all quadruples having the same width »
and equally spaced. Because Eq. (24) has a unique solution
for an rms matched beam in the constant-parameter
alternating-gradient focusing section with s/S> 1, integrating
Eq. (24) from s=S§ to s=0 yields four implicit functions
E(C, ,Cz), E(Cl ,Cz), a"(C, ,Cz), and E’(Cl ,Cz). The
conditions for an initially converging round beam, i.e.,
a(0)=>b(0)=a(0)/2=b(0)/2 and a’(0)=>"(0), uniquely
determine the parameters C; and C,, which is done numeri-
cally with Newton’s method. The results are presented in
Figs. 3 and 4.
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FIG. 4. Plots of rms beam envelopes versus propagation dis-
tances. Here the solid and dashed curves are obtained from Eq. (24),
whereas the solid dots and open circles are from the self-consistent

simulation for a beam with v= 0.25. Here @ and b are normalized to

ve(0)S. -

Figure 3 shows the focusing field parameter Szxq as a
function of s, where 7=0.3, C,=231, C,=1.44, and C3
=10.0. In Fig. 4, the solid and dashed curves show, respec-
tively, the rms matched envelopes a(s) and b(s) for the
focusing channel with vacuum phase advance go=70.8° and
beam perveance SK 14&(0) = 16.0 (corresponding to a space-
charge-depressed phase advance of 0=5.4°), where a neglj-
gibly small unnormalized rms emittance of £(0)=0.15
x 10~ % mrad has been assigned to the beam at s=0.

Self-consistent simulations are performed with N,
=3072 and free-space boundary conditions to study the
phase space evolution for the two beams in the focusing
channel shown in Fig. 3. In Fig. 4, the solid dots and open

circles correspond to the rms envelopes a(s) and b(s) ob-

tained from a self-consistent simulation for a beam initially .

with a nonlinear velocity profile with »=0.25. It is evident in
Fig. 4 that there is excellent agreement between the predic-
tion of the rms envelope equations (24a) and (24b) and the
results of the self-consistent simulation, despite that the
transverse flow velocity is perturbed substantially.

We now examine the evolution of the particle distribution
if the nonlinearity in the. initial transverse flow velocity pro-
file is introduced and compare with equilibrium beam propa-
gation. The results are summarized in Figs. 5 and 6. Figure 5
shows a comparison between particle distributions in the
configuration space with and without nonlinearity in the ini-
tial transverse flow velocity at three axial positions: s/§

=0, 1.0, and 2.5. These axial positions are chosen such that

- a(s)=b(s). In Fig. 5, the plots shown on the left correspond
to v=0 and those on the right to »=0.25. For r=0.25, the
initially round beam develops sharp edges after the first lat-
tice, becoming partially hollow subsequently at s/S =2.5.1n
" Fig. 6(b), the radial distribution of 3072 macroparticles at
* §/§=2.5 shows that the density at the edge is twice the den-
sity at the center of the beam and that there is a small halo
extending outward beyond the radius where the density
reaches its maximum. The partially hollow density profile
shown in Fig. 6(b) is similar to, but not as pronounced as,
that observed in the heavy ion beam injector experiment at
LBNL [11]. In contrast to the case with »=0.25, the beam
propagates in an equilibrium state for v=0 without beam
hollowing and without any significant beam halo formation,
e rhanen 0 Fie A(0)
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FIG. 5. Particle distributions in the configuration space for v
=0 (left) and »=0.25 (right). Here the coordinates x and y are
normalized to Ve(0)S. )

C. Matching and transport of a beam into a periodic focusing
channel consisting of overlapping solenoidal and
quadrupole focusing fields

As another example of corkscrewing elliptic beam equi-
librium, we consider the matching and transport of an ini-
tially round beam into a periodic focusing channel consisting
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FIG. 6. Radial distribution of the macroparticles at s/S =2.5 for
(a) v=0 and (b) »=0.25.
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FIG. 7. Plots of focusing and beam parameters versus normal-
ized propagation distance /8 for an equilibrium beam in a tapered
linear focusing channel consisting of overlapping periodic solenoi-

dal and alternating-gradient quadrupole magnetic fields. Here K
—1.6X10~% and S=1.0m. In (a) the solid and dashed curves are
dimensionless focusing, parameters S2k,(s) and S?k,(s), respec-
tively; in (b) the solid and dashed curves are the beam envelopes
a(s) and b(s) predicted by Eq. (14), whereas the solid dots and
open circles are obtained from the simulation; in (c) the solid curve
and open circles are the angles of the beam ellipses obtained from
Eq. (14) and the simulation, respectively.

of overlapping solenoidal and quadrupole focusing fields.
Figure 7(a) shows plots of dimensionless focusing param-
eters S2k, and s? K, Versus propagation distance s/ S for the
channel. In Fig. 7(a), the width of solenoidal and quadrupole
magnets is 0.35. In the matching section (0<s<S), two
quadrupoles at s/S= 0.25 and s/S=0.75 are placed at angles
@g=—50° and @,=—40°% respectively. In the periodic fo-
cusing section (s>8), the quadrupoles are placed at ¢,
=0° in the first cell (1<s/$<2) and are rotated by —120°
in each of subsequent cells, yielding a periodicity of 35 for
the channel. To determine the angles and the strengths of the
matching quadrupoles, we first find from Eq. (14) periodic
solutions with a(s+8)=a(s), b(s+8)=b(s), a,(s+S5)
=a,s), ay(s+S)=ay(s), and 6(s+3S)= 6(s) in the pe-
riodic focusing section and then match the initially round
beam with a(0)=5b(0) and a,(0)= ay(O) with the periodic
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FIG. 8. Particle distributions in configuration space obtained
from the simulation for the case shown in Fig. 7. -

solution at s/S=1 using a shooting method. The results are
shown in Fig. 7 for K=1.6X 1073 and S=1.0m. The solid
and dashed curves in Fig. 7(b) are calculated envelopes a(s)
and b(s), and the solid curve in Fig. 7(c) is the angle 8(s).

We have validated the exact steady-state solutions using
self-consistent simulations. In the simulations, use is made of
Green’s function method to determine electrostatic fields
generated by the charged particles in the beam and image
charges due to a perfectly conducting cylindrical tube of ra-
dius r,,. A detailed description of the simulation code was
presented earlier [19]. For the focusing parameters shown in
Fig. 7(a), 10* macroparticles are loaded in the present simu-
lation according to the initial distribution function

F(xyx})=ny(x O)exp{—[x Brc— V(% O /T(x,)},

where n,(x,,0) and V,(x,,0) are the initial density and ve-
locity profiles defined in Egs. (5) and (6), respectively,
T(x,)= To(x*1a*+ y*b*—1) is an effective temperature‘
profile, and Ty is a constant chosen to give an initial total (4
times rms) emittance of 0.2X 10" %mrad. The conducting
cylindrical tube radius is chosen to be r,,=10.0mm. Results
of the simulation are summarized in Figs. 7(b), 7(c), and 8.
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Shown in Figs. 7(b) and 7(c) is the excellent agreement
between the beam envelopes a(s) and b(s) and angle 6(s)
obtained from the self-consistent simulation and those pre-
dicted by the generalized beam envelope equations (14), as
expected. In Fig. 8, particle distributions in the plane (xy)
are plotted at several axial locations of the matching section
and the periodic focusing section, showing the transition
from a round beam to a corkscrewing elliptic beam in the
focusing channel. The elliptic beam completes a full clock-
wise turn from s/S=1 to s/S=4 [see Figs. 8(¢)-8(h)]. Both
image charge effects and emittance growth are negligibly
small. The density profiles are computed at various axial
locations in the simulation, and they are found in good agree-
ment with the density profile defined in Eq. (5). It should be
stressed that the beam propagates in a steady state without
either beam hollowing or halo formation.

VI. CONCLUSIONS

We have shown that there exists a new class of cold-fluid
corkscrewing elliptic beam equilibria for ultrahigh-
brightness, space-charge-dominated beam propagation
through a linear focusing channel consisting of uniform so-
lenoidal, periodic solenoidal, and/or alternating-gradient
quadrupole focusing magnets in an arbitrary arrangement in-
cluding field tapering. Generalized beam envelope equations
were derived. The equilibrium beam density and flow veloc-
ity profiles and equilibrium self-electric and self-magnetic
fields were determined by solving generalized beam enve-
lope equations. For beams with negligibly small emittance,
these steady-state solutions were validated with self-
consistent simulations using the Green’s function method.
While these steady-state solutions correspond to corkscrew-
ing elliptic beam equilibria in general, they do recover many
familiar beam equilibria in beam physics, such as the cold-
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fluid round rigid-rotor equilibrium and both the periodically
focused rigid-rotor Vlasov equilibdum and Kapchinskij-
Vladimirskij equilibrium in the zero-emittance limit.

Examples and applications of the present equilibrium
beam theory were discussed. In particular, a corkscrewing
elliptic beam equilibrium in a uniform solenoidal magnetic
field was obtained. As an important application of the
present equilibrium beam theory, a general technique was
developed and demonstrated with an example to control
large-amplitude density and flow velocity fluctuations (such
as beam hollowing and halo formation) often observed in
ultrahigh-brightness beams. Furthermore, an ultrahigh-
brightness beam equilibrium in a periodic focusing channel
consisting of overlapping solenoidal and quadrupole focus-
ing field was obtained to illustrate a wide range of applica-
bility of the present equilibrium beam theory in manipulating
ultrahigh-brightness beams.

It is anticipated that the equilibrium beam theory pre-
sented in this paper can be used to perfectly match ultrahigh-
brightness beams in practical beam transport systems and to
design electron beam equilibrium configurations in new
vacuum electronic devices. Finally, the present cold-fluid
equilibrium theory can be generalized to include the effect of
finite beam emittance, which will be discussed in a future
article.
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A stability analysis is made of an electron beam, propagating along and gyrating about a uniform
magnetic field, for the case of a spatiotemporal equilibrium distribution in the Pphase angle of the
transverse electron momentum component. The axial momentum component and the magnitude of
the transverse momentum component are assumed to have definite values in the equilibrium
distribution. The analysis is carried out by applying Lorentz transformations to previous results for
i jilibrium distributions. The dispersion matrix, its eigenmodes (which relate field
ldispersion relation are obtained. Numerical results show that varying the

of a nongyrotropic equilibrium distribution has only a small effect on

7

frequency by orders of ma
[S1070-664X(00)05010-2]

I. INTRODUCTION

Stimulated emission of radiation by electronsigyratir
magnetic fields has been an important subject of thepfeti
computational, and experimental investigations in s
physics, astrophysics, and vacuum electronics for sevefd

stimulated radiation correspond to the Doppler-shifted elec- .
tron cyclotron frequency and its harmonics. For moderately
and highly relativistic electrons, the fundamerital frequency
is approximately 292w,, where ¥, is the relativistic mass:
factor associated with the axial motion of the electrons and
o, is'the relativistic cyclotron frequency.

A number of papers have dealt with stability properties
of a relativistic electron beam in the presence of a uniform
magnetic field By=Bye, for the case of a nonisotropic equi-
librium distribution in the phase angle ¢ of the momentum
component p, perpendicular to the field.”'* In particular, it
has been suggested that such distributions may be employed
to enhance the growth rates of desired radiation modes in
devices employing the cyclotron resonance maser instability.
More recently, there has been some interest in harmonic con-
version processes in spatiotemporal equilibrium distributions
in 1517 .

In order to gain a greater understanding of systems with
spatiotemporal distributions in &, we analyze the stability
properties of such systems in this paper. Preliminary results
are given in an earlier report.!® The analysis is limited to
equilibrium distributions in which the axial momentum com-
ponent p, and the magnitude of the transverse momentum
component p, have the definite values p,, and p, ,, respec-
tively. Moreover, the systems are constrained to vary spa-

YPermanent address: Department of Physics, Clark University, Worcester,
Massachusetts 01610. Electronic mail: jdavies@clarku.edu

1070-664X/2000/7(10)/1/12/$17.00

tadiation, but has a strong effect on the frequencies and wavenumbers at
tiayel mechanism is found by which electrons emit stimulated radiation
nle, can be greater than the usual Doppler-shifted electron cyclotron
wdey, © 2000 American Institute of Physics.

tially only in the direction of the applied magnetic field (z
direction). '

In Ref. 7, we analyzed the stability properties of such -
electron beam systems for two types of nonisotropic equilib- -
rium distributions in the phase ¢. These were the time- .

decades.) 6 It is well known that the frequencies of “ dependent distribution, which is a function of the equilibrium

pstant of the motion ¢— w ¢, and the axial-dependent dis-
tribution, which is a function of the equilibrium constant of
ion ¢—w.z/v..
, ghown in this paper that all relevant spatiotemporal
Hpd are obtained from the above distributions by
Sformations. By making use of a Lorentz trans-

n_beams. A detailed analysis is made of
stability properties{of. stich electron beams.
In the present stability &nalysis, we find a novel mecha-
nism by which electrons™emit stimulated radiation at fre-
quencies that are greater thanithe:usual Doppler-shified elec-
tron cyclotron frequency bygorders,of magnitude. Two key
_requirements for this mecha.m“ﬁgL foccur are that the gy-
rophases of the electrons in the magnetic field have spa-
tiotemporal correlations, and that the electrons have an in- ‘
verted population in the transverse momentum space. In
contrast to most previous studies of the stimulated radiation
by gyrating electrons with a random or spatial-dependent
gyrophase distribution and inverted population in the trans-
verse momentum space, the present analysis assumes the gy-
rophase distribution to form a wave pattem in the direction
of the magnetic field. When the phase velocity of the wave
pattern is close to the average axial velocity of the electrons,
the electrons emit right-hand, circularly polarized stimulated
radiation at the relatively high frequency w=2| B,

© 2000 American Institute of Physics
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—B.| '@, where B,c and B,oc are the phase and electron
axial velocities, respectively, and ¢ is the speed of light in
vacuum.

It should be pointed out that the wave pattern in a spa-
tiotemporally gyrating relativistic electron beam depends on
how the beam is formed. One of the schemes to form a
spatiotemporally gyrating electron beam is through the cy-
clotron laser (microwave) acceleration.'®' In this case, the
phase velocity of the wave pattern in the beam is given by
Boc=wy(wp—w,) " Brc, where wy is the laser (micro-
wave) frequency. In the limit w3 w, and B,— 1, the stimu-
lated radiation occurs at w=2w,.

The organization of thig'paper is as follows. In Sec. II,

the spatiotemporal distributiontis described, and the equilib-
rium distribution is defined in (#) The phase velocity 8, of
a surface of constant distributiogsin phase is defined and
evaluated in (9). The primary {EsulfOfhis paper is the dis-
persion relation for spatiotemporal egmilibria with definite
values of p, and p, . This result iJ'§t3 (13) of Sec. IIL.

The derivation of our results from

Appendix give the dispersion matrix for
systems considered in this paper. Another i

the expression for the eigenmodes of the ampli
given in (19) of Sec. III. This result gives the wivenumbers
and frequencies of coupled right-hand circularly pflariz

amples are presented in Sec. IV. In these examples, the
choice of spatiotemporal distribution [namely, the choice of

the phase velocity (8,) of the phase pattern in the equilib- ~ In the

rium distribution] is seen to have little effect on maximum’
growth rates of electromagnetic waves, but to have a strong
effect on the range of unstable frequencies and wavenumbers

and upon the wavenumbers and frequencies of coupled
waves. These maximum growth rates of electromagnetic
waves in the spatiotemporally gyrating relativistic electron
beams are greater than those in the corresponding gyrotropic
relativistic electron beams. We discuss and summarize our

results in‘ Sec. V.

Il. SPATIOTEMPORALLY GYRATING EQUILIBRIUM

We consider a beam consisting of electrons moving
along and gyrating about a uniform magnetic field B,
=B,&,. Properties of the system are assumed to vary in the z
direction only. All electrons in the equilibrium beam are as-
sumed to have the same axial momentum (p,=p,,) and the
same magnitude of transverse momentum (p, =p;,). As
shown in Fig. 1, the phase angle of p, is ¢=tan"'(p,/p)),
whereas ag=tan"!(p, /p,) is the pitch angle. The equilibrium
distribution in- phase is spatiotemporal; that is, at some z
=z,, we impose the condition

B(z,2)= wot + o, M
where wy and ¢, are constants and ¢ is the time. This geom-
etry is shown in Fig. 2(a). The value of w, depends on how
the electron beam is formed. For example, wy=0 if the elec-
tron beam is formed by passing through a tapered static wig-
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y

gler magnetic field. If the electron beam is generated in a
cyclotron resonance accelerator, then wy cotresponds to the
if frequency of the accelerator that is a shifted cyclotron

Ve frequency. The phase of an unperturbed electron at (z, £) is

o g &(z,t)= wo,(t- ﬁ)+ bo+ w,
. » Uz

)

zZ—Zg

Uzo0

above equation, the relativistic cyclotron frequency is

d by w.=Q./vy, where Q.=eBy/mc is the nonrel-
é&glotron frequency, —e and m are, respectively, the

ge and mass, c is the speed of light, yymc? is

atiefs

elec c
the un; ed  relativistic electron energy, and v,
=pio/ yo ¥ Shatiotemporally gyrating beam equilibrium

&

is shown sCherflatically in Fig. 2(b). In an experiment, z,
would correspog*?; the point where the electron enters the
on;

region of intera B,. However, boundary conditions
are not dealt with in flif§ paper, and the system is considered
to extend over the fullfrapgs (i.e., —0<z<w) of z.

A distribution of value;8f ¢ at each (z, ¢) will result if
distributions of values oﬁgf‘:" gl/gr zy exist. From (2), such
distributions will produce a:fiistribittion in the values of the
equilibrium constant of the mﬂ‘ho&, defined by

3

. z
X=(z,1) = wgt+(wy— 0.) —.
: Uz0
Consequently, a suitable equilibrium distribution for the sys-
tem is ' :

@)

&pL—p.io) :
____pr Pie p:—p:0)P(x),
XL

fO(pJ. ’Pz’X)="o

where ®(x) is a periodic function of period 27 and ny is a
constant particle density. We normalize the integral of
So(pL Pz, x) over momentum space to ny. Consequently,

)

24

2
®(x)dp= f S()dy=1.
4] 0 .
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FIG. 2. (a) The generation of a spatiotemporally gyrating relativistic elec~
tron beam equilibrium with electrons arriving at z=z, with a gyrophase of
@(2q,)=wot+ ). (b) A spatiotemporally gyrating relativistic electron
beam equilibrium.

bt
!

Two additional constants of the unperturbed motion are

o ) o
(,ﬂ’ £=g-wot=¢==Cr, ©)
and
: z _mﬂc @

Using (3), we express y as the following linear combination
of £and &

Wy Wo ),
X= o, &+ (I - )5.

c

®

TIf w0¥wc in (8), then y=§¢= ¢— w.t. In this case, the equi-
librium distribution UO(p_L Pz ’X) =f0(.p.|. 3Pz :g)] in (4)
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does not depend on z, and we refer to it as the time-
dependent equilibrium distribution. If wy=0 in (8), then y
={=¢— w.z/v,. In this case, the equilibrium distribution
Uﬂ(pl ’pZ!X)=f0(P.L 5Pz sO] in (4) does not depend on ¢,
and we refer to it as.the axial-dependent equilibrium distri-
bution.

At each instant of time, there is a z-dependent distribu-
tion of phase angles given by (3) and (4). Each point on a
surface of constant z will contain the same distribution of
values of ¢. As time progresses, a surface with a given dis-
tribution will move with a normalized phase velocity By
=dz/cdt obtained by differentiating (3) with respect to ¢ at
constant ¢. This phase velocity is

©

@y—w,’

where B.o=v9/c. Making use of (9), we can also express y
as x=¢—w.(B,0—B,) " '(z/c—B,t), which is a single- -
particle constant of motion. We see that B, is infinite for the
time-dependent equilibrium distribution (wp=w,_), and that -
B,=0 for the axial-dependent equilibrium distribution (@, . _
=0). A

Nl. DISPERSION RELATION

A stability analysis of systems with the time-dependent -
d axial-dependent equilibrium distribution functions has
: carried out in Ref. 7. In that analysis, Fourier trans-
are taken of the Vlasov and Maxwell equations in

hed electric field components. For the case of defi-
ies of p,=p.o and p, =p,,, these are algebraic

D(ck , w)=0, (10)

where D is a (ﬁ%—three dispersion matrix and E is a
three-component \{éc%)} e components of E are the Fou-
rier transforms off&iﬁ . -gézf?u;bed electric field components,
El—=Elx'—iElyt El{ﬁs:gaé
these represent the right-hat

iE\,, and E,, . Respectively,
d circularly polarized (RHP) ra-
diative field, the left-hand cirgiilagpolarized (LHP) radiative
field, and the longitudinal elecyfif fitld. The dispersion rela-
tion for the system perturbations “given by

(Im

It is shown in Appendix{AJthat any spatiotemporal equi-
librium distribution with |5,)<1 can be obtained from a
Lorentz transformation of the axial-dependent equilibrium
distribution, and that any spati'otemporal equilibrium distri-
bution with |8,|>1 can be obtained from a Lorentz trans-
formation of the time-dependent equilibrium distribution.
Consequently, a stability analysis of systems with spatiotem-
poral equilibrium distributions is obtained from Lorentz
transformations of (10) and (11). Results for |B,|<1 and
|B,1>1 have the same analytic form and are assumed to
extend to the case of | B,|=1. '

detD(ck,w)=0. 1
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The primary result of this paper (derived in Appendix )
is the dispersion relation for systems having definite values
of p,=p,o and p,=p.o. In terms of the dimensionless

wavenumber £ and the dimensionless frequency &, defined
by

M__(k,0)M 4 (K, 0)M (£, )
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el | (12)

the dispersion relation can be expressed as

2\2
=l (“’p) B2 ols1|H{(B00— )M 1. (K, &) +[ Bro( 6—2 B, ko) — (E—2k0) 1’ M _ _ (K, &)}

2\w;
1 [w0?\2 oF

*t7 <§§‘) Blolsal*l@ &

—k(k—2ko) ) B:o( 60—

(i —2kg) W Bod—k),

which is a tenth-degree polynomial equatlon»'{fi;i%x'd)er kora.

In Eq. (13),

M__(k,8)=(6*-B)6~£B,—1)°

wz M
- ;g'(lﬁ—fﬂxo)(ﬁ—fﬂxo—l)

Bro(a?—R2),

M++<£,éa)=[(zs—zﬁ,fo)z—(E—zto)zl(a—kﬂm—1)2

-+

ST
o
heNI\eu

( ~kB0—2)(6—kBo—1)

hehj'h ()

* ;T %ﬁio[(@—zﬁpfo)z— (E-2K0)%],

2
) w
M(£,0)=(0~£B0= 1)~ =5 (1= B} (14)
[
Moreover, f,= 4mnge?/ yom, BLo=pio/vome,
 hy=ckyloc=(By—Bu) (s)
and
2% ’
= dx®(x)exp(—inx). (16)

Notice that B,£o= wy/w,— 1, where wy is defined in (1).
The dispersion relation in (13) is invariant under the
transformation
E—»—E*-’-ZkAQ ,
. am
B——&*+2B,k.

Under the transformation in (17), the R(E), (&) plane is
inverted through the point (£o,8,£;), and T(k) and T(&)

N ) 1 /62
f%@ﬂﬁo)—k(k—zlEo)]zM,,(k,da)— 7 (%5—) Blo(sas2 +s_asD i o—28k)

(13)

are unchanged. Consequently, a plot of T(&) as a function of
real £ is unchanged by reflection through the vertical line £
=£,.

It follows from (AIS) of Appendix ¥ that the eigen-
modes of the dispersion matrix for the €ase of a spatiotem-
pora.l equilibrium distribution are given in terms of the elec- '
tric field by :

E(z t) e'(h—u!)[z-lﬂEl (k w)e+ |
Z'WEl.,.(k—Zk,,,w—z,,,o)e &~ 2i(kor=wq1)

+Eu(‘-’ ko,w—wo)é,e"""’"""’)] (18)
, y;
ez 28,01 (€4) and
: E,_(k,®)
E(k, o) j k—2£y,8—-28,k) (19)

' fﬁ;‘fg—%,w—ﬂpﬁo | ' '
For positive R(k ®) and E, (k&) are Fourier -

transforms of the ri -h ﬁgrcularly polarized (RHP) and
the left hand circularly polari: (LHP) radiation fields, re-
spectively. [These polanzatxgii gignments are reversed for
negative R(£).] The transfomrﬁk 'k, @) is that of the lon-
gitudinal electric field.

IV. NUMERICAL EXAMPLES

In all of the following numerical examples, the value
chosen for ®(y) in (4) is

®(x)= lim &(x—e),

. e0

Osy<2mT. (20)

Consequently, all equilibrium electrons with the same z and ¢
have the same phase ¢. For these distributions, a system is

stable for sufficiently large magnitudes of real £. The corre-
sponding Fourier components in (16) are 5,=s,=1. In all
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FIG. 3. Plots of 3(6) =J(w)/ o, V8 I—'ck/w, &Pg%

eters ‘)'0—2, w’lw —0.05 00—04 and J|=32
value of 8,,=0.797 66. anueaofﬂwnomnlmdpbuevdoc:tyﬂ,mdi.
are (a) 8,=0 (w,=0) and £o=—12537, (b) B,=0.85 (e ) and
=19.11, (c) B,=2 (wy=1.663w,) and £,=0.8317, and"
-w,)mdf. 0. Wide lines indicate that instability is due to
cyclotron mode. Narrow lines indicate that instability is due to

an electrostatic mode.

= (0

where «

examples, ©Y/w?=005 and =04,
=tan"!(p, o/p,o) is the equilibrium pitch angle.

Figure 3 shows growth-rate curves [T(8)=%(w)/w, vs
kE=ck/w, with k real] for a system with 7,=2.0 (and the
corresponding normalized axial velocity B,0=0.7977). The
resonance condition for the cyclotron maser instability is sat-
isfied at £=(1— B;0) ~1=4.94. Plots are shown for several
values of the normalized phase velocity 8, . Figures 3(a) and
3(d) refer, respectively, to the axial-dependent (8,=0 or
wg=0) and time-dependent (8,=% or wy=w,) distribu-
tions. The corresponding values of £y=(8,~ B;0) "' in (15)
are —1.254 and 0, respectively. Figure 3(c) pertains to S,
=2.0 (or wp=1.663,) with £y=0.8317, whereas Fig. 3(b)
pertains to 8,=0.85 (or wg=16.24w,) with £,=19.11.

It is interesting to point out that the maximum growth
rate for each of the nonisotropic phase distributions in Figs.
3(a)-3(d) is greater than the maximum growth rate for the
comresponding gyrotropic relativistic electron beam, which is
T(D)=0.054. (See Fig. 4 of Ref. 7.)

Reference to Fig. 3 shows that maximum growth rates
and growth rates at the resonance value £=4.94 are not very
sensitive to the value of the phase velocity B,. On the other
hand, the range of values of k for which instability exists
may be very sensitive to values of 8,. [A corresponding
sensitivity of the range of unstable frequencies is present
because, for unstable modes, R(&)=pB,0k when £>1.] In
particular, instability of a RHP radiative component will oc-
cur at large values of £ [and of R(&)] if ko= (8,— B.0) " is

3,
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large in magnitude. This effect is illustrated in Fig. 3(b),
where £,=19.11. The effect is explained by first noting that
instability is expected for values of £ near the resonance £
and second recalling (from the discussion at the end of Sec.
IM) that plots of T(w) versus real £ are symmetric under
reflection through £,. It is also a consequence of the fact
[evident from (19)] that frequencies and wavenumbers of
coupled waves in an eigenmode become greatly dnvcrgent
for lﬂl'gﬁ Eo

In Fig. 3 and in the following, Figs. 4-9, both wide and
narrow solid curves are employed. Detailed numerical calcu-

- lations of roots of the dispersion relation in (13) show that

the wide curves refer to modes whose instability, in the low

. wavenumber region (£< £,), is due to coupling of the cyclo-

tron mode with the electromagnetic modes with w=* ck=0.
In the high wavenumber region (£>£,), the instability is
due to coupling of the cyclotron mode with the electromag-
netic modes with w—2B,9cky*c(k—2k)=0. The wide
curves are characterized by w—2 B8,9ck— w =<0 over the en-
tire £ interval of instability. The narrow solid curves refer to
modes whose instability is due to coupling of the electro-
static modes. They are characterized by o= Bock—w,
+(wp/0)(1— %) ?=0 over intervals of instability with
k<ky and o~ Bock— 0.~ (0,/ 0. )(1 — %) ?==0 over in-
tervals of instability with £>£,. ' o
Figures 4(a) and 4(b) are, respectively, plots of R(d) vs .

' i and of T(&) vs £ over the interval of the upper-£ growth-

peak in Fig. 3(b). Coupled radiative components of the
field & htude eigenvector in (19) are El-(f @) and

IRE, _(k,5) represents hlgb-fxequency, forward
§! RHP radiation, whereas £ ,(£—38.21,6—32.48)
uency radiation in the £ interval in Fig. 4.

It is eviden Fig 4(a) that the high-frequency radiation
is slow-wav: i4tion (Le., its wave phase veloclty cd/k is
less than the speéd pflight).

It is of interesfto ds ter rmine the relative contributions of

Sxas

the high- and low-frequency components to the total Poyn-
ting flux. As a meas%l’re*b?tbe relative contribution of the
high-frequency componenrﬁ&thetotal Poynting flux, we em-
ploy the Poynting flux ratio Sﬁ"' degined by

_ (S_d(ckB))
2 {5k 0) # 5+ Ack~2cke, 02 Beko))|

(3))

In the above equation, (S_,(ck,w)) and (S, ,(ck—2cky,w
—2B,cky)) are the time-averaged z components of the
Poynting fluxes produced by the high-frequency and low-
frequency electromagnetic components, respectively. [Be-
cause the low-frequency flux may be backward traveling for
some intervals of £, the ratio S may exceed one and will
approach infinity when high- and low-frequency fluxes can-
cel.] An expression for Sy, as a function of £ and & is pre-
sented in (A31).

A plot of log;o Sy, vs £ for the system of Figs. 3(b) and
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FIG. 4. Dispersion relations in the region of the higher-£ growth peak for
the system of Fig. 3(b), with equilibrium parameters =2, wy/w;=0.05,
ay=04, 8,=3,=1, and B,=085 (w,=16240,). The corresponding val-
ues of B, and Ky are 0.7977 and 19.11, respectively. Plots are (a) (&)
=M(w)/wv, vi k=cklw, (real) for unstable modes, and (b) (&) vs £ (real).
Frequencies and wavenumbers refer to the component E_(ck, ). The sec-
ond radistive component of the eigenvector is E,.(ck—382lw,,0
—32.480,). Wide lines indicate that instability is due to coupling of a
cyclotron mode. Narrow lines indicate that instability is dve to coupling of
an electrostatic mode. .

4 i3 presented in Fig. 5. We regard the high-frequency com-
ponent as dominant if S>3 [i.e., if log;oSz>—0.3010.).
Figure 5 shows that this condition is valid over the interval
37<k<40, which corresponds to 30w, <M(w)<33w, in
Fig. 4(a). It is to be emphasized that these wavenumbers and
frequencies greatly exceed the resonance frequency and
wavenumber for the cyclotron maser instability (&=F£
=4.94). The frequency w, (equal to 16.24w, in this ex-
ample) is exceeded by approximately a factor of 2.

The rapid variations in the value of Sy in the interval

37<k<40 are explained as follows. Reference to (A29)

shows that S, (ck—2cky,w—2p,cky) vanishes when ck
=2cky (k=38.21) and when R(w)=2B,ck [R(d)
=32.48 and £=39.6 for the unstable branch associated with
the highest maximum of the growth-rate peak in Fig. 4(b)].
At these values of £, logyo Sz=0. For values of ¥ between
these zeros of the low-frequency flux, S.,(ck—2cky,w

—2B,cky) becomes negative, allowing log,o Sx, to approach

J. A Davies and C. Chen

i L i ] L

32 34 36 38 4
'cklmc

FIG. 5. Plots of the Poynting ratio Sy, in (A31) vs f=ck/w, for unstable
modes in the region of the higher-£ growth peak for the system of Figs. 3(b),-
4(a), and 4(b). Wide lines indicate that instability is due to coupling of a

" cyclotron mode. Narrow lines indicate that instability is due to coupling of

an electrostatic mode.

infinity when the high-frequency and low-frequency fluxes
cancel. ' ’
Next we consider mildly relativistic systems with v, -

7y =1.2 and the corresponding 8,,=0.509 14. Resonance for
s cyclotron maser instability occurs at &= £=2.037. Fig-

ures 6(a) and 6(b) show growth-rate [T(d) vs £] curves for
optibes of B,=0 (ko=—1.9644 and wy=0) and B,
=0,675.8 (Eo=6 and w,/w,=4.0548). From (19), coupled
radiafivelj n édes for the case of B,=0 [Fig. 6(a)] are

E\-(ka Ey.+(k+3.9288,0). Figure 7 is a plot of
R(w) v!

ﬁﬁtzble modes in this case. It is evident from
this plot th ;Q%&est frequency of unstable modes is ap-

proximately 2.1

In Figs. 8(a 3| ), we present, respectively, plots of
R(w) vs £ and %(ﬁﬁ‘ % SE of unstable modes when By
=0.675 80 for the £ “fntkval of the large-£ growth peak in
Fig. 6(b). Coupled radiaﬁgg;%gonents, obtained from (19),
in this case are E,_(K,&)d%hdsE,, (F— 12,6—8.1096).
From Fig. 8(a), it is evident,that prowing electromagnetic
waves with frequencies of approximately 7w, are present in
this system.

Figure 9 is a plot of the logarithm of the Poynting ratio
in (21) as a function of £ over the interval of £ in Fig. 8. It is
evident that the high-frequency RHP flux dominates the low-
frequency flux (i.e., logyo Sz> ~0.3010) over a very narrow
interval in this case. Numerical results show this interval to
be 11.987<k<12.036 with 7.079<R(&)<7.103. These
values are much greater than the resonance values of @=#£
=2.037 given above for the cyclotron resonance maser in-
stability. Moreover, the values 7.079<R($)<7.103 are
slightly less than twice the value w,/w,=4.0548.

The above and other numerical examples indicate that
the width of the interval of relatively large high-frequency
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FIG. 6. Growth rate curves [J(8)=J(0)/ w, vs k=cklw, (real)] for the

equilibrium parameters y,=12, w}/w}=005, 2p=04, 5,=3,=1, and the
corresponding value S,,=05091. In plot (a), 8,=0 (w=0) and £,
=—1.964; whereas in plot (b), 8,=0.67580 (wy=4.0550,) and ko=6.
Frequencies and wavenumbers refer-to the component E_(ck, w). The sec-
ond radiative component of the eigenvector in (19) is E, (ck— ko, ,w
— Bykow,). Wide lines indicate that instability is due to coupling of a cy-
clotron mode. Narrow lines indicate that instability is duetoeouphng of an

electrostatic mode.

flux decreases with increasing frequency (increasing £;) and
with decreasing 7p.

V. CONCLUSIONS

In Ref. 7, stability properties of an electron beam, propa-
gating in a uniform magnetic field By=B,¢,, were analyzed
under the constraint that all quantities depend spatially only
on z. The equilibrium distribution in the phase angle ¢ of p,
was assumed to be nonrandom, and two distributions were
considered. These were the time-dependent distribution in
which the distribution depends on ¢ through the constant of
the unperturbed motion é= ¢p— w ¢ and the axial-dependent
distribution in which the distribution depends on ¢ through
the constant of the unperturbed motion, {= ¢—w z/v . In
this paper the analysis has been extended to spatiotemporal
distributions, which depend on the constant of the unper-

Stimulated radiation from spatiotemporally gyrating . . . 7
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FIG. 7. Plot of 3(3) vs £ (real) for unstable modes of the system of Fig.

" 6(a). Frequencies and wavenumbers refer to the component E. (ck, w). The

second radiative component of the eigenvector in (19) is E,(ck -
+3.929w, ,w). Wide lines indicate that instability is due to coupling of &
cyclotron mode. Narrow lines indicate that instability is due to coupling of
an electrostatic mode. '

turbed motion x= ¢— wot+(wo— ®.)z/v,q, defined in (3).
This analysis is limited to equilibrium distributions [Eq. (4)]
for which p, and p, bave definite values.

By carrying out Lorentz transformations of the results of

@ f. 7, we have obtained the dispersion relation in (13) for-
e spatiotemporal equilibrium distribution. The dispersion

i is given in (A19)-(A21), and its eigenmodes (which
de the coupling of the RHP mdlatlve, LHP. radiative,

static waves) are given in (19). The pamneters
i aghw spatiotemporal system are p,o, po, w3/ 0},
sand.s,. The parameter B, is the phase velocity of
hal to the z axis) upon which the equilibrium

distributity thas a fixed form. The Fourier components
s, and 55 aré give (16). Once ®(x) (and consequently s,
and s,) are ﬁxe‘% spatlotemporal distribution can still be

changed by where 0=<|B,|<w,

Numerical coﬁ;g itions indicate that the above varia- -
tion in B, has little effect bn maximum growth rates or on
the growth rate at the resonarice frequency for the cyclotron-
resonance maser instability. H Wever it has a strong effect
on the range of real o an of RHP radiation over
which the system is unstablefga&:has a strong effect on the
relative wavenumbers and frequencies of coupled RHP ra-
diative, LHP radiative, and electrostatic waves. In particular,
the distribution in (20) has been shown to result in unstable
modes in which the RHP radiative component dominates
over a relatively narrow frequency range at much higher fre-
quencies than the resonance frequency for the cyclotron-
maser mstabllnty These high frequencies occur when the

hase velogj e beam veloci .
In such cases, these frequencies exceed @y by approximately

a factor of 2.

It is well known that the cyclotron maser instability in a
gyrotropic beam is very sensitive to axial velocity spread if
the instabilify occurs at a highly Doppler upshifted cyclotron
frequencyé5 The parameter regime of interest here is 3,

N ELLE 23, e 22
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FIG. 8. Dispersion relations in the region of the higher-£ growth peak for
the system of Fig. 6(b), with equilibrium parameters y,=12, wy/w?
=005, 2y=04, 5,=5,=1, and B,=0.6758 (wy=4.055w,). The corro-
sponding values of 8.5 and £, are 0.509 14 and 6, respectively: Plots are (a)
R(&)=R(w)/w, va k=cklw, (real) for unstable modes, and (b) J(&) vs £

(real). Frequencies and wavenumbers refer to the component E_(ck,s). .

The second radiative component of the eigenvector in (19) is E.(ck
—12w,,w—8.110w_). Wide lines indicate that instability is due to coupling
of a cyclotron mode. Narrow lines indicate that instability is due to coupling
of an electrostatic mode.

=pf,<1. In this case, the dispersion relations for the system

are a set of coupled integral equations if there is an axial
momentum spread. [The integral equations are obtained by
applying the Lorentz transformation to the integral equations
in Egs. (41)—(43) of Ref. 7.] We have begun an analysis of
the properties of these integral equations in order to the de-
termine the degree to which thermal spread affects the insta-

bility reported in this paper.
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' FIG. 9. Plots of the Poynting ratio Sy, in (A31) versus f=ck/w, for un-

stable modes in the region of the higher-£ growth peak for the system of
Fig. 6(b). Wide lines indicate that instability is due to coupling of a cyclo-"
tron mode. Narrow lines indicate that instability is due to coupling of an

electrostatic mode.

APPENDIX: DERIVATION OF DISPERSION
RELATIONS AND THE POYNTING FLUX RATIO

1. Lorentz transformations of spatiotemporal

, equilibrium distributions

Consider a Lorentz transformation from an initial ﬁ'ame '
ference S to a frame S’ that moves with the normalized
velocity B, in the positive z direction relative to S, Under

l@sformaﬁon,
A s % ‘(2— uCt)’ Pxo 7u(pzﬂ—ﬁu70mc))

76”10 = 7u( Yomc— Buon), (Al)

uZ),

o= oG, -
where 7u=(1-@'{fﬂle quantities ¢'=¢ and p},
=p, o are invarian s@gg is transformation. The distribu- . .
tion function in (4) is*al vanant.”'Expressed in terms of
primed quantities, it is A5 “:: S \ 23
f'(PJ. Py ,X) fD(PJ. »Pz(PEsPé)éfl

5(!’1. —Pio)
PJ.

8(pz _on)(p(X)’ (AZ)

where no—-no'yo/'yo
Using (3) and the Lorentz transformations in (A1), we

obtain the following expression for y in terms of primed
quantities:

L (o ST AW
x= ﬂz0+ﬂu< ﬂ Bu)g Bzo+ﬁu ( wé)
¢ =¢-wyt, (A3)

z’

¢ w—.

Uz
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Quantities appearing in (A3) are w.=eBo/ygmc and w;
= wq/yy. The phase velocity 8, of surfaces of constant ¢
(or constant distribution in ¢) relative to the reference frame
S’ is determined by differentiating (A3) with respect to ¢’ at
constant ¢. The result, written in terms of both primed and
unprimed quantities, is
g1 Bt 0By _ o= B cby
TP wy— @, wo(1—BuBr)— o,
The transformation velocity 8, from a genéral reference
frame S to a frame S’ relative to which the distribution is
time dependent is obtained by setting the coefficient of {’ in
(A3) equal to zero and ;%éﬁ%%for B, . Expressing the result
in terms of unprimed qiiantitiés and employing (9), we ob-

tain

(A4)

1
B.= B, g (AS)
Consequently, the transformatxon is -' (relative to S)
| ﬂ |>1 Conversely, ifa dlstnbutlon 8.im# dependent rela-
ence frame

cient of £’ in (A3) equal to zero and solving for j
result is

B = ﬂp .
Consequently, the transformation is possible if (relative to S)

| B,|< 1. Conversely, if a distribution is axial dependent rela-
tive to S, then | B,| <1 relative to any other reference frame

S.

(A6)

2. Derivation of the dispersion matrix and
eigenmodes

In the stability analysis of Ref. 7 for the time-dependent
and axial-dependent equilibrium distributions, the Fourier
transforms of the field components E’(ck’,»’) were found
to be related by matrix equations of the form

D'(ck’,0’)E'(ck’,@")=0, (A7)
where D' is a three by three dispersion matrix and E’ is a
three-component column matrix whose components are Fou-
rier. transforms of E|_=E,—iE|,, E{,=E|,+iE|,, and
E/{X The primes appear in these equations because the
frame of reference in which the distribution is either time
dependent or axial dependent is defined as the primed frame
(S') in this treatment.

A. Derivation for the case of |B,|>1

The time-dependent equilibrium distribution function is
given by (A2) with x=¢’. From the discussion in Sec. 1of
this Appendix, it is clear that properties of a system with a
spatiotemporal equilibrium distribution and |Bpl>1 can be
derived from Lorentz transformations of a system with a

Stimulated radiation from spatiotemporally gyrating . . . 9

time-dependent equilibrium distribution. It is shown in Ref.
7 that for the time-dependent equilibrium distribution the
eigenmode E’'(k’,0") is of the form . .
! —
E,_(ck',@")"
E\|i(ck' @' —20))
' El’,(ck’,w’—-w;)

E'(ck’,w')= (A8)

where w)=eB,/yymc. The dispersion matrix for the time-
dependent case is readily derived from (59) of Ref. 7. In
order to determine stability properties of systems with spa-
tiotemporal equilibrium distributions with phase velocities
18,|>1, itis necessary to apply the Lorentz transformation
to the quantities appearing in (A7). Under the Lorentz trans-
formation from S’ to § (which travels with velocity — 8,
relative to S'), the electromagnetic fields (and their Fourier
transforms) transform as

Elz=E;z’ Blz=B;z’

E\= 7u(E;x+BuB;y)’ 4 lx=7u(B;x—BuE;y)’ (A9)
Ely= Yu(E;y_ﬂnB;x)9 Bly= 7u(B;y+BltE{x)'

From (19) and the Maxwell equation,

2 - ’
%' E|+( )= at,Bl-o-(z t'), (A10)
ere Bl,.(z t')_le(Z t')"‘lB'y(Z t'), we find that

unde Lorentz transformation,

w) 'y,,(l+ﬂ" )Elz(ck',w').

It followSsfre ) and (A11) that the transformahon rule
for the eig (ck' ") in (A7) and (A8) is
E(ck,w)= ")E’(ck',m'), (A12)
where )
ol
9 14+ Bof! g 0 0
Lo,
[APNAYS et '
L(ck',0") 0 7.,(1+ ,Bck ) o
o'=2w,
0 0 1
(A13)
and
Ei-(ckw)
E(ck,0)=| E1+(ck=28,v,0;,0—-2y,0]) | (A14)

Elz(Ck— B Yuwz- » O 'yu“’:-)

Using (A5) and the Lorentz transformations in (A1), we can
rewrite the arguments in the above expression entirely in
terms of quantities pertaining to S to obtain
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El-(Ck9 w)

E(ck,w)= (E 1+(ck ‘ZCko,w—zﬁkao)) (A15)
E(ck—cky,w—B,cky)

where

k= (A16
¢ o—‘—ﬂp—ﬂzoi )

By comparing (A7) and (A12), it is seen that the disper-
sion matrix in the unprimed (spatiotemporal) is given by
D(ck,w)=L(ck',w')D'(ck’,w’)L"(ck',w'). (A17)

An expression, obtained frog;;%(Al) and (A13), which is use-
ful in the evaluation of @b&lgjs

D__(ck,w) " —_y
D(ck,w)= =N+ wacko,w—2B,ckg)
- y

The diagonal terms in the above equation are @

2
%) .k 2
D__(ck,w)=w2—czk2-—-g[2(w— —I-,—'-?-) S
2 Yom

x(af—klfg—w )—l_ plo .
Yom ¢ Yom2c?
kp:o -2
comafot
(0*—ck)| o Yo ©,
D (ck—2cky,w—2B,ckg)

2
o
=(w—2ﬁpcko)2—(ck—2cko)2— -23

4 k, -1
X[Z(w-— Px0 '2“’:)( _ P20 wc)
Yom Yom

) |
P
— o,:fcz' [(@—2B,cko)>—(ck—2cke)?]

()]

Dzz(Ck'_CkO yw= BkaO)

(A20)

—1-w2(1- Pk _kpo o ~2
p W' Yom )

The terms D__(ck,w), D, (ck,w), and D,,(ck,w) are,
respectively, the dispersion functions for the RHP radiative
field, the LHP radiative field, and the longitudinal electric

field.
The off-diagonal elements of the dispersion matrix in

(A19) are

D, (ck—cky,w—B,cky)

J. A Davies and C. Chen

LY (ck' ')

Wk
I
| R =2 Py
S a—2y,0,
0 0 1
- (a13)

The dispersion matrix for spatiotemporal equilibrium
distributions is determined using (59) from Ref. 7, (A13),
(A17), and (A18). When B, is eliminated from the result by
using (AS5), we obtain

LT Y-z

= N4z

(A19)°

k -2
X( - D x0 wc) ,
Yom

Pio

2
= - -2 k, _
7= = af(@=2Bcko)s i

X [;i—;%(w—2ﬁpcko)—(ckf2cko)]

k -2
X (0)" P20 wc) ,
Yom
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2
_ .wp’ _ -1 PLO
Tew == S (=2, cko) sy e

x [ﬁ;(w—Zﬁpcko) —(ck—2cko)]

k -2
X (w— -&"— “’c) .
Yom

In the above equation, w,2,=47moe2/ yom is the relativistic
plasma frequency squared. This quantity is invariant under

Lorentz transformations. The quantities s, are the Fourier

(A21)

(A22)

tigptemporal equilib-
[ess than one are

The transformed eigenvector is obtained from (A12). When
written in terms of 8, , the expression for this eigenvector
differs from that in (A14). However, once (A6) is employed
to set B8,= B, the expression for E(ck,w) is the same as
(A15). Consequently, (A15) gives the eigenmodes E(ck,w)
for spatiotemporal equilibrium distributions both for |B,|
>1 and for | B,|<1.

Equation (A17) together with (A24) is used to obtain
D(ck,w), the dispersion matrix for the case of the spatiotem-
poral equilibrium distribution with |B,|<1. After (A6) is
used to eliminate reference to 8, and the unprimed quantities
are eliminated, the result is the same as that given by (A19)-
(A21) for the case of |B,|>1. Consequently, (A19)—(A21)
gives the dispersion matrix for the spatiotemporal equilib-
rium distribution for both the cases of [8,]>1 and of | 8,|
<l -

C. The case of g,=1

‘Equations (A15) for the eigenmodes and (A19)-(A21)
are well behaved in the limit of | 8,|=1. Consequently, we
consider them to be valid when | B,|=1. The fact that | 3,
=1 corresponds to |B,]=1 causes no difficulty, becaunse
such quantities as ¥y, p, ¢, and p,, are held fixed while the

limit is taken.
To summarize, for all —wo< B,<, the dispersion ma-
" trix for the case of spatiotemporal equilibrium distributions
is given by (A19)—(A21) and the eigenmodes are of the form

Stimulated radiation from spatiotemporally gyrating . . . 1

determined by carrying out Lorentz transformations of re-
sults for the axial-dependent equilibrium distribution. The
axial-dependent equilibrium distribution (for definite values
of p o and p}y) is attained by setting y={¢' in (A2). In this
case, the dispersion matrix D’ in (A7) is readily obtained
from (90) of Ref. 7. The eigenmode E’ in (A7), given by
(91) of Ref. 7, is

E;_(ck',0")
’ E! (ck'%zi’;— w') |
E'(ck’,0')= | '* Bxo’ 0 (A23)

! ’ wé r

Ei.\ck +F'z; ®
Equation (A12) govemns the Lorentz transformation of the
eigenvector from S’ (the frame of the axial-dependent equi-
librium distribution) to § (the frame of the spatiotemporal
equilibrium distribution). From (A1), (A9), and (A11), it is -
seen that now the transformation matrix L is given by

(A24) -

By, (A15). The dispersion relation in (13) is obtained
tfiig the determinant of the matrix in (A19) equal to
¥ oafi®ilso be obtained by substituting Lorentz trans-
formed igs into the dispersion relations in (69) and
(100) of Rﬁnd replacing the transformation velocity

with the ap; }ﬁmcﬁon of B,.]
3. Derivation of g;% ng flux ratio

In the analysis of‘the,numerical results in Sec. IV, we
employed the Poynting fluxétatio Sy in (21), which is the

magnitude of the ratio of thex& component of the average
Poynting flux of the RHP ra ‘bﬁ%ﬁdd to the z component
of the average total Poynting“fht “¥or a single eigenmode

(A15) of the dispersion matrix in (A19), the Poynting flux
vector is » )

c
S= i R(E)X ?i(B), (A25)

where . .
E(z,t)=8,2"'2E, _(ck,w)exp(ikz—iwt)+2_2"1?2
XE\+(ck—2cky,w—2Bycko)expli(k—2ky)z
—i{w—2B,cko)t]+&E  (ck—cky, 0~ Bycko)
Xexpli(k—ko)z—i(w— Bycko)t], (A26)
with
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8.=2""2(a,+ig,). (A27)
The application of the Maxwell equation in (A10) yields
B(x,1)=2,2"12B, _(ck,w)exp(ikz—iwt)
+8_2712B,  (ck—2cky,w—2B,cky)
Xexp[i(k—2ko)z—i(w—2pB,cko)t],

Where
ck
B[—(Ck,(l)) =—i :,-El —‘(Ck’ w),

Bl+(Ck“26ko,w—2BPck I
_ . (ck—2cko) =
" (0=2B,cky) %
Substituting (A27) and (A3 Ry Tta,

(A25), averaging the result oyg

= m/(R(w)— Bycko), and assuming
[273(w)] <[ (@)~ Byckol,

we obtain the time-averaged z compbn :
vector (S.). The result is

E\+(ckgiZeko,0—2B,cko). (A28)

d R(w) 1
(S:)= 8_,;3"]3[23(0)1] CkW 5 E1-(ck,

XE}_(ck,w)+(ck—2cky)

lw— ZABPCkOI

1
XEEI +(Ck—2-_cko,0)“23pcko)

XEY, (ck—2cky ,w—-Zﬁpcko)} (A30)

It fo_llbws from (A305 that the value of the Poynting - flux
ratio Sy in (21) is .
Sz (S_s(ck,w)) |

R [(S_c(ck, ) +S . (ck—2cke,0—2B,cko))|

=|ckR( )| =2 Byckol*[| w]*(ck—2cky)

X (R( @) —2B,cko) RR* +ckR(w)|@—2 B,cko?1 ™| 12
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=|kR(d)| 628,k [| 6|2 (k—2K)

X (R(3)~2B,ko)RR* + kR(0)| 6—28,k0*17"],
(A31)
where
_Ey(ck—2cky,0—2B,cko)
- E,_(ck,w)
The amplitude ratio in (A32) is obtained from the amplitude
(eigenvector) equation in (12). The flux ratio in (A31) can
exceed one and may approach infinity at particular values of
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ELECTRON BEAM HALO FORMATION IN HIGH-POWER
PERIODIC PERMANENT MAGNET FOCUSING KLYSTRON AMPLIFIERS
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ABSTRACT

Electron beam halo formation is studied as a potential mechanism for electron beam losses in
high-power periodic permanent magnet focusing klystron amplifiers. In particular, a- two-
dimensional self-consistent electrostatic model is used to analyze equilibrium beam transport in a
periodic magnetic focusing field in the absence of radio-frequency signal, and the behavior of a
high-intensity electron beam under a current-oscillation-induced mismatch between the beam and.
the periodic magnetic focusing field. Detailed simulation results are prescntéd for choices of |
system parameters corresponding to the 50 MW, 11.4 GHz periodic permanent magnet (PPM)
focusing klystron experiment performed at the Stanford Linear Accelerator Center (SLAC). It is
found from the self-consistent simulations that sizable halos appear after the beam envelope
undergoes several oscillations, and that the residual magnetic field at the cathode plays an

important role in delaying the halo formation process.

Keywords: halo formation, klystron, periodic permanent magnet focusing, and microwave source.




L. INTRODUCTION

One of the main thrusts in high-power microwave (HPM) research is to overcome the
problem of radio-frequency (RF) pulse shortening [1,2]. Several mechanisms of RF pulse
shortening have been proposed [3], ranging from plasma formation at various locations in the
device to nonlinear effects at the RF output section [4-7]. However, few of them have been fully
verified in terms of theory, simulation and experiment. In this paper, we discuss halos around
high-intensity electron beams as a mechanism by which electron beam loss and subsequent plasma
formation may occur in high-power klystron amplifiers.

From the point of view of beam transport in a periodic or uniform solenoidal focusing field,
there are two main processes for halo formation in high-intensity electron beams. One process is
caused by a mismatch in the root-mean-square (rms) beam envelope [8], and the other is due to a
mismatch in the electron phase-space distribution [9]. Both processes can occur when the beam
intensity is sufficiently high so that the electron beam becomes space-charge-dominated. The
purpose of this paper is to show that the former is responsible for electron beam halos in high-

power klystron amplifiers.

For a periodic solenoidal focusing channel with periodicity length § and vacuum phase |

advance G, a space-charge-dominated electron beam satisfies the condition [8]

40, o, »B5

n

SK S 1(s) 1,
=29%x107 —| — '—2—2>1, ¢))

where K =2¢’N,/vY,B,mc’ is the normalized self-field perveance, I, is the electron beam

current in amperes, €, =Y,B,€ is the normalized rms emittance in meter-radians, and § is in
meters. In the expressions for the self-field perveance K and the normalized rms emittance €,, N,

is the number of electrons per unit axial length, m and — e are the electron rest mass and charge,

respectively, ¢ is the speed of light in vacuo, and 7, = (l -B; )“U2 is the characteristic relativistic

mass factor for the electrons. The emittance is essentially the beam radius times a measure of
randomness in the transverse electron motion. For a uniform density beam with radius a and

temperature 7,, the normalized rms emittance €, is given by

a(Yk,T, 172
8rl = ‘YbBbe = E(—b’rTcB-Zi) ’
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where k, is the Boltzmann constant.

In particular, we study equilibrium beam transport in a periodic magnetic focusing field in the
absence of RF signal and the behavior of a high-intensity electron beam under a current-
oscillation-induced mismatch between the beam and the periodic magnetic focusing 'ﬁeld, using a
two-dimensional self-consistent electrostatic model. Detailed simulation results are presented for
choices of system parameters corresponding to the 50 MW, 11.4 GHz periodic permanent magnet
(PPM) focusing klystron experiment [IO] performed at the Stanford Linear Accelerator Center
(SLAC). It is found from the sclf-cdnsistcnt simulations that sizable halos appear after the beam
envelope undergoes several oscillations, and that the residual magnetic field at the cathode plays
~ an important role in delaying the halo formation process.

The paper is organized as follows. In Section II, a two-dimensional self-consistent model is
presented for transverse electrostatic interactions in a high-intensity relativistic electron beam
propagating in a periodic focusing magnetic field. In Section III, the equilibrium state for intense
electron beam propagation through a PPM focusing field is discussed, the equilibrium (well-
matched) beam envelope is determined, and self-consistent simulations of equilibrium beam
transport are performed. In Section IV, the effects of large-amplitude charge-density and current
oscillations on inducing mismatched beam envelope oscillations are discussed, and use is made of -
the model presented in Section II to study the process of halo formation in a high-intensity
electron beam. The results are compared with the SLAC PPM focusing klystron amplifier

experiment. In Section V, conclusions are given.

II. MODEL AND ASSUMPTIONS

We consider a high-intensity relativistic electron beam propagating with axial velocity B,ce,

through the periodic focusing magnetic field

ext A 1 ’ A ~

B*(x,y,s)= B (s)é, - ;-Bz (sXxex + yey), 3)
where s =z is the axial coordinate, xé, + ye, is the transverse displacement from the z -axis,

"~ B(s+S8)=B(s), S is the fundamental periodicity length of the focusing field, and the prime

" denotes derivative with respectto s.



In the present two-dimensional analysis, we treat only the transverse electrostatic interactions
in the electron beam. The effects of longitudinal charge-density and current oscillations in the
electron beam, which are treated using the relativistic, Lorentz equation and full Maxwell
equations, will be considered in Section IV. For present purposes, we make the usual thin-beam
approximation, assuming that (a) the Budker parameter is small, ie., &’N, / y,mc’ << 1, (b) the
beam is thin compared with the lattice period S, and (c) the electron motion in the transverse'.
direction is nonrelativistic.

Under the thin beam approximation, the self-consistent electrostatic interactions in the

electron beam can be described by a two-dimensional model involving N, macroparticles (ie.,
charged rods). In the Larmor frame, the transverse dynamics of the macroparticles is governed by
[8,11]

d’x. e

dsz‘ +1cz(s)x‘. ,,Bb 2 ax (P (x,,y, ,S) 4)
dzyn’ € _ :
dsz + KZ(S).Y‘- _Ybﬁbmc ay' ¢ (xl’yl’ )_ ’ (5) "

where i =1, 2,....,N, , and the focusing parameter K,(s) and self-field potential ¢’(x,., y,.,s) are

defined by

eB,(s) : _12.(s) ’
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respectively. Here, Qc(s) is the (local) relativistic cyclotron frequency associated with the axial
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magnetic field B,(s), and 7, = (x,2 + y?)”z. The beam is assumed to propagate inside a perfectly
conducting cylindrical tube of radius r,, such that the self-field potential satisfies the boundary
condition ¢°(r, = r,,s) = 0. Detailed derivations of Eqs. (4)-(7) can be found in [8] for 7, — oo.

The two-dimensional self-consistent model described by Egs. (4) and (5) will be used to

simulate equilibrium beam transport in a PPM focusing field in the absence of RF signal (Section

-




IIT) and electron beam halo formation in the transverse direction induced by large-amplitude

longitudinal current oscillations (Section IV).

1. EQUILIBRIUM BEAM TRANSPORT
In the absence of RF signal, the relativistic electron beam propagates through the focusing
field in an equilibrium state. In this section, we discuss important properties of the equilibrium
beam transport, and present results of our analysis and sclf-conSistcnt simulations of pcriodicaﬂy
focused intense electron beam equilibria for choices of system parameters corresponding to those

used in the SLAC 50 MW, 11.4 GHz PPM focusing klystron experiment [10].

A. Beam Envelope Equation for a Rigid-Rotor Vlasov Equilibrium

It has been shown previously [12,13] that one of the equilibrium states for the system
described by Eqgs. (4) and (5) is a rigid rotor Vlasov equilibrium in which the beam dchsity
is uniform transverse to the direction of beam propagation. The outermost beam radius

1,(s) = r,(s+ S) obeys the envelope equation [12]

A \2
d’r K (B) (4e)
dszb+l(z(s)r;,—:b'——;b3——— ’;,3 =0, 8)

where 'bebmc<f’B> = constant is the macroscopic canonical angular momentum of the beam at
r=r(s), and € is the unnormalized rms emittance associated with the random motion of the

electrons. If there is no magnetic field at the cathode, then <I3e ) =0. Any residual magnetic field

at the cathode will lead to <13;, > #0.

We analyze the beam envelope for equilibrium beam transport in the SLAC 50 MW, 11.4
GHz PPM focusing klystron experiment [10]. The system parameters of the experiment are
shown in Table 1. To examine the influence of small residual magnetic field on the beam

: transport, we analyze two different cases shown in Table 2. In Case I, we assume no residual
magnetic field at the cathode, such that y bB,,mc(f},) =0. In Case II, however, a residual field of
. 6.86 G is assumed, corresponding to a beam with a finite canonical angular momentum given by

‘y,,[i,,mc(]A’(,)=4.5><10'26 Kgm?s. The following dimensionless parameters are derived from




Table 2:  S,(s)=[1.04xsin(2ns/S)  (with §S=2lcm), o©,=423 =0.738,
SK /40 =10.1, and (B, }/4e =0.0 in Case I and (B )/4e =6.93 in Case I

Figure 1 shows plots of the axial magnetic field B,(s) and outermost beam radius 7,(s) versus

the propagation distance s for Cases I and II. In both cases, the amplitude of well-matched
(equilibrium) envelope oscillations about the average beam radius is only about 0.005 mm, as seen.

in Figs. 1(b) and 1(c).

B. Self-Consistent Simulation of Equilibrium Beam Transport

Self-consistent simulations based on the model described in Sec. II are performed to further
investigate the equilibrium beam transport. In the simulations, 4096 macroparticles are used. The v
macroparticles are loaded according to the rigid-rotor Vlasov distribution [12] with an initial
beam radius equal to the equilibrium (matched) beam radius at s = 0 [see Figs. 1(b) and 1(c) for
Cases I and I, respectively].

Figure 2 shows, respectively, the initial and final phase-space distributions at s =0.0 cm and
s =42.0 cm for Case I. Comparing the phase-space plots shown in Figs. 2(e) and 2(f) with the
initial phase-space plots in Figs. 2(b) and 2(c), we find an increase in the emittance (randomness)
in the transverse electron momentum. The emittance growth is a result of numerical noise in the
simulation. However, since the beam dynamics is mostly dictated by space-charge forces for the
parameter regime considered here, the emittance growth has little effect on the beam transport
properties. In fact, the distribution in the configuration space shown in Fig. 2(d) agrees very well
with the initial distribution shown in Fig. 2(a). Moreover, the effective beam radius obtained from
the simulation agrees with that obtained from Eq. (8) within 0.2%. In the simulation, no beam loss
is detected.

Figure 3 shows, respectively, the initial and final phase-space distributions at s =0.0 cm and
" s =42.0 cm for Case II. The final distributions shown in Figs. 3(d), 3(e), and 3(f) agree very well
with the initial distributions shown in Figs. 3(a), 3(b), and 3(c). In this case, the effects of
* numerical-noise-induced emittance growth are less pronounced than in Case I (Fig. 2) because the

~ momentum distribution is primarily determined by the finite angular momentum but not by thermal




effects. The effective beam radius agrees with Eq. (8) within 0.5%, and no beam loss is detected

in the simulation.

C. Phase Space Structure

It is known that the phase space structure for a matched intense beam in a periodic focusing
system exhibits nonlinear resonances and chaotic behavior [14]. To determine how sensitive the
equilibrium beam transport is against small perturbations for the parameter region of interest, Qc
examine test-particle dynamics subject to the field configuration consisting of the applied focusing
field and the equilibrium self-electric and self-magnetic fields. We make use of the Poincaré

surface-of-section method to analyze the phase-space structure of test particles. The results are
shown in Fig. 4(a) for Case I with f’a /4e =0, and in Fig. 4(b) for Case II with 139 /4 =-0.99.

In Fig. 4, the successive intersections of 15 test-particle trajectories with the phase space (r,P)
are plotted every period of the focusing field for 1000 periods. One test particle is initialized at the
phase-space boundary of the equilibrium distribution, and the corresponding test-particle orbit is
represented by the inner curved arc in Fig. 4(a) and by the innérmost contour in Fig. 4(b). The:

remaining test particles are initialized outside the beam. For both cases shown in Fig. 4, the values
of B, are chosen such that the boundary of the equilibrium distribution extends to r=r,.

Although the space-charge force outside the beam is nonlinear, the phase space is almost entirely

regular. The same results showing regularity in phase space structure are obtained for different

A

values of F, for Cases I and II.

To summarize the results of this section briefly, we find from self-consistent simulations and
detailed phase space analysis that in the absence of RF signal, the equilibrium beam transport in
the PPM focusing klystron is robust and no beam loss is expected. These results are in good

agreement with the experimental observation [10] of 99.9% beam transmission in the absence of

. RF signal.

IV.HALOS INDUCED BY MISMATCHED ENVELOPE OSCILLATIONS
Microwave generation in a klystron is due to the coupling of large-amplitude charge-density

and current oscillations in the electron beam with the output RF cavity. The charge-density and



current oscillations result from the beating of the fast- and slow-space-charge waves on the
electron beam, and are primarily longitudinal. From the point of view of beam transport, the
charge-density and current oscillations perturb the equilibrium beam envelope discussed in Sec.
III. Although a quantitative understanding of the effects of such large-amplitude charge-density

and current oscillations on the dynamics of the electron beam is not available at present, especially

in the transverse direction, a qualitative study of such effects is presented in this section. In the

present analysis, use is made of the standard one-dimensional cold-fluid model to estimate the
amplitude of the envelope mismatch induced by longitudinal current oscillations, and the two-
dimensional electrostatic model described in Sec. II is used to explore the process of electron

beam halo formation in the transverse phase space of the electron beam.

A. Estimation of the Mismatch Amplitude

It follows from the linearized continuity equation that the current perturbation (SIb)f is

related to the axial velocity perturbation c(SBb) - by [15,16]

(81,),, o (8),,
I, _m—BbCkf,s B, ’

where subscripts f and s denotes the fast- and slow-space-charge waves, respectively, and ®

9

n

and k, , are the frequency and wave numbers of the perturbations, respectively. Making the long-

wavelength approximation for a thin beam, it can be shown that the dispersion relations for the
fast- and slow-space-charge waves can be expressed as [15]

Ve,

w,
VAA

where k; assumes plus sign, and k, assumes minus sign. In Eq. (10), €, is the longitudinal

m‘BbCkf,s =% (10)

* space-charge coupling parameter. The effective value of € is estimated to be £ _ = 0.012 for the
SLAC PPM focusing klystron [10]. In the klystron, the total current oscillations are the sum of
~ fast- and slow—spéce-charge waves with a phase difference of ~ 180°. As a result, the total

current oscillations and the total velocity oscillations are out of phase by ~ 180°. Therefore, the

amplitude of the total current oscillations is given by

V¥
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This has the important consequence that the perveance of the electron beam varies dramatically

along the beam. From the definition of the perveance in Eq. (1), it is readily shown that the

amplitude of perveance varation is given by

8_K ~ 3’Yb‘J'£:n)(8]b total '

K
For the SLAC PPM focusing klystron [10], Eq. (12) yields 8K /K =1.45x(81,) ,/1,. At the

RF output section, 6K / K exceeds unity considerably because 8/, / I, = 1. (Note that the current
oscillations in the RF output section are highly nonlinear and the maximum current exceeds 21,.)

From the beam envelope equation (8), the relative amplitude of beam envelope mismatch is
estimated to be Or, /7, =056, where 7, is the equilibrium beam radius and &8I, /1, =1 is
assumed. In the self-consistent simulations presented below, we use 8r, /7, = 1.0 in order to take

into account the fact that the instantaneous current exceeds 2/, during high-power operation of

the klystron.

B. Self-Consistent Simulation of Electron Beam Halo Formation

The process of halo formation in intense electron beams is studied using the two-dimensional
self-consistent model described in Sec. II. Results of the simulations are summarized in Figs. 5-10
for Cases I and II. In the simulations, 4096 macroparticles are used, and the macroparticles are

loaded according to the rigid-rotor Vlasov distribution [5] with an initial beam radius of 2r, (0),
where r, (O) is the equilibrium beam radius at s = 0 [see Figs. 1(b) and 1(c) for Cases I and II,

respectively]. The effect of current oscillation build up in the PPM focusing klystron, which.
requires three-dimensional modeling, is not included in the present two-dimensional simulation.

| We first discuss the results of the self-consistent simulation for Case I. In Fig. 5, the effective

beam core radius is plotted as a function of the propagation distance s. The solid curve is

obtained from the self-consistent simulation, and the dotted curve is obtained by numerically

solving the envelope equation (8) with the emittance calculated in the self-consistent simulation.



As expected, results from the self-consistent simulation and envelope equation are in excellent
agreement. Although the core radius oscillations are not exactly periodic due to emittance growth,
the core radius oscillates with an approximate period of 11.5 cm, such that the envelope typically
executes four periods of oscillations in the entire PPM focusing section of the SLAC PPM
focusing klystron which is 42 cm long. |

Figure 6 shows the phase-space distributions of the electrons at several axial distances during
the fourth period of the beam core radius oscillation for Case I. In contrast to the equilibrium
phase-space distribution (Fig. 3), significant halos appear at s =34.7, 37.8, 42.0, 44.1, and 46.2
cm. In the configuration space plots shown in Figs. 6(a) to 6(c) we observe a large variation in the
beam core radius during the mismatched envelope bsci]lation period. The halo particles reach a

maximum radius of r, =6.4mm at s =42.0 cm, where the beam core radius is a minimum and

the traveling-wave RF output-section is located. Around 1.5% of the electrons are found in the

halo at that axial position. Because the maximum halo radius of r, = 6.4 mm is greater than the

actual beam tunnel radius r, =4.7625 mm, these halo electrons are lost to the waveguide wall.

Therefore, the simulation results show that there will be 1.5% beam electron loss. In terms of -

beam power loss, 1.5% beam electron loss in the simulation corresponds to 0.2% beam power

loss because the lost electrons have given up 88% of their kinetic energies (or have slowed down
by about a factor of 2 in their axial velocities). The simulation results agree quaiitatively with
0.8% beam power loss observed in the experiment [10]. The discrepancy between the simulation
and experimental measurements may be caused by nonlinearities in the applied magnetic fields
which are not included the present simulation. 4

As the beam propagates in the focusing field, its distribution rotates clockwise in the
(x,dx/ ds) phase space, as shown in Figs. 6(f) to 6(j). The particles are initially dragged into the
halo at the edges of the phase space distribution, where a chaotic region is formed around an
unstable periodic orbit that is located just outside the beam distribution [17]. The unstable
periodic orbit is a result of a resonance between the mismatched core envelope oscillations and
the particles dynamics. As the halo particles move away from the beam core, the influence of
- space charge forces decreases and these halo particles start rotating faster than the core particles,

creéting the S-shaped distributions observed in Figs. 6(f) to 6(j).
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The halo formation is also observed in the (x,dy/ds) phase space distributions shown in Figs.
6(k) to 6(o0). Although the macroscopic (average) canonical angular momentum <IA’9> is constant

in the simulation, the distributions presented in Figs, 6(k) to 6(0) indicate that the distribution of
single particle canonical angular momenta induces spread in the(x,dy/ ds) phase space.

Shown in Fig. 7 are the halo radius, ie., the maximum radius achieved by all of the
- macroparticles in the self-consistent simulation, and the effective beam core radius as a function of
the propagation distance for Case I. It is apparent in Fig. 7 that the halo formation process takes

place essentially during the first 4 periods of the envelope oscillations. After reaching r, = 6.4 mm

at s =42.0 cm, the halo radius saturates. It is interesting to note that once the halo is dc.vclopcd,
the halo radius and core envelope radius oscillate in opposite phase, with the former being
maximum when the latter is minimum [as seen in Fig. 6(c)] and vice versa.

Second, we discuss the self-consistent simulation results for Case IT and the role of small
residual magnetic field at the cathode in the halo formation process. Figure 8 shows a plot of the
effective beam core radius as a function of the propagation distance s. In Fig. 8, an excellent
agreement is found between the envelope obtained from the self-consistent simulation (solid E
curve) and the envelope obtained by numerically solving the envelope equation (8) with the
emittance calculated in the self-consistent simulation (dotted curve). One of the effects of the
residual magnetic field at the cathode is to decrease the period of the envelope oscillations. The
period for case II is 10.5 cm, slightly shorter than the period found in Case I (Fig. 5). The
envelope executes four periods of oscillations in the entire PPM focusing section of the SLAC
klystron.

Figure 9 shows the phase-space distributions of the electrons at several axial distances during
the fourth period of the beam core radius oscillations for Case II. The configuration space
distributions shown in Figs. 9(a) to 9(e) do not exhibit sizable halos. In particular, comparing
- Figs. 9(a)-9(e) with the configuration space distributions for Case I, shown in Figs. 6(a)-6(¢), it is
clear that the halos are much more pronounced in Case I. Analyzing Figs. 9(d) and 9(¢) in more
_ detail we observe hollow regions in the interior of the beam and that the existing halos appear in
. the form of vortices. Because the beam rotation period is calculated to be approximately 3 times

the envelope oscillation period, the hollow regions and associated vortex structure might be a

11



result of a diocotron instability process driven by a resonance between the envelope oscillations

and the beam rotation.
The properties of the phase space distributions shown in Figs. 9(f) to 9(o) resemble the

properties discussed in Case I with regard to the rotation in the (x,dx/ ds) phase space and the

spread in the (x,dy/ds) phase space. In comparison with Case I, the main difference is that the |

phase space distributions in Case II exhibit vortex structures, »
Figure 10 shows the halo radius and effective beam core radius as a function of the
propagation distance for Case II. Although sizable halos arise in the simulation after many periods

of envelope oscillations, it is evident that the halo formation process is slower in Case II than in

Case I (see Fig. 7). In particular, despite that the initial beam radius in Case II is larger than in

Case I, the halo radius in Case I is greater than that in Case II at the output section (s =42 cm) of
the PPM focusing klystron. Because the halo radius at s =40cm is 5.3 mm and is still greater
than the beam tunnel radius, the electrons in the halo are lost to the waveguide wall. Nevertheless,

these results indicate that a small residual magnetic field at the cathode plays an important role in

delaying the halo formation process and might be used to prevent electron beam loss in future

experiments.

. V. CONCLUSIONS

We have studied equilibrium beam transport in a periodic magnetic focusing field in the
absence of RF signal, and the behavior of a high-intensity electron beam under a current-
oscillation-induced mismatch between the beam and the magnetic focusing field. Detailed
simulation results were presented for choice$ of system parameters corresponding to the 50 MW,
11.4 GHz periodic permanent magnetic (PPM) focusing klystron experiment performed at the
Stanford Linear Accelerator Center (SLAC).

From self-consistent simulations and detailed phase space analysis, we found that in the
absence of RF signal, the equilibrium beam transport is robust, and that there is no beam loss,
which is in agreement with experimental measurements. During the high-power operation of the
) klystron, however, we found that the current-oscillation-induced mismatch between the beam and
the magnetic focusing field produces large amplitude envelope oscillations. We estimated the

amplitude of envelope oscillations using a one-dimensional cold-fluid model. From self-consistent

L




simulations we found that for a mismatch amplitude equal to the beam equilibrium radius, the halo
reaches 0.64 cm in size and contains about 1.5% of total beam electrons at the RF output section
for a beam generated with a zero magnetic field at the cathode. Because the halo radius is greater
than the actual beam tunnel radius, these halo electrons are lost to the waveguide wall, yielding
0.2% beam power loss. The simulation results agree qualitatively with 0.8% beam power loss
observed in the experiment [10]. The discrepancy between the simulation and experimental
measurements may be caused by nonlinearities in the applied magnetic fields which are nc~)t'
included the present simulation.

We also studied the influence of a small residual magnetic field at the cathode on the
equilibrium beam transport and electron beam halo formation during high-power operation of the
klystron. We found that the equilibrium beam radius increases with the residual magnetic field.
Although the halo grows in size to reach the waveguide wall the RF output section and a
nonlinear vortex structure dt;,vclops in the electron beam, we found that the onset of halo
formation is delayed, which might be used to prevent electron beam loss in future experiments.

Although the results presented in this paper are based on a two-dimensional electrostatic
model, they give a good qualitative description of the process of halo formation in high-power.'
PPM focusing klystron amplifiers and suggest that halo formation is a potential mechanism for

electron beam losses in such devices.
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Table 1. SLAC 50 MW, 11.4 GHz, PPM Focusing Klystron Experiment

Beam Current 1, 190 A
Beam Voltage 464 kV
Cathode Radius 2.86 cm
Cathode Temperature 7, 800 Ct
Beam Radius 2.38 mm'
Pipe Radius 4.7625 mm
Total Tube Length 90.0 cm
Focusing Field Period Length 2.1 cm
PPM Focusing Section Length 42.0cm
RMS Axial Magnetic Field 1.95 kG

" estimated

Table 2. System Parameters Used in the Simulation

BASIC PARAMETER CASE1 CASE Il
Beam Current 1, 190 A 190 A
Beam Voltage 464 kV 464 kV
Cathode Radius 2.86 cm 2.86 cm
Residual Magnetic Field at Cathode 00G 6.86 G
Cathode Temperature 7 800°C 800°C
Beam Radius 2.05 mm 2.38 mm
Pipe Radius 9.0 mm 9.0 mm
Total Tube Length 90.0 cm 90.0 cm
Focusing Field Period Length 2.1cm 2.1 cm
PPM Focusing Section Length 42.0 cm 42.0cm
RMS Axial Magnetic Field 1.95 kG 1.95 kG
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FIGURE CAPTIONS

Figure 1. Plots of the axial magnetic field in (a) and outermost beam radius r,,(s) versus the
propagation distance s for equilibrium beam propagation corresponding to Case I in'(b) and Case

11 in (c). The dimensionless parameters are: S, (s)=[1.04xsin(2ns/S)P, o, = 42.3° =0.738,

SK/40g =10.1,and (A, }/4e =0.0 in (b) and (A, }/4e =6.93 in (c).

Figure 2. Plots of the initial and final particle distributions at s =0.0 and 42.0 cm for the

equilibrium beam corresponding to the parameters in Case L.

Figure 3. Plots of the initial and final particle distributions at s =0.0 and 42.0 cm for the

equilibrium beam corresponding to the parameters in Case IL

Figure 4. Poincaré surface-of-section plots for 15 test particle trajectories under the influence of
the PPM focusing field shown in Fig 1(a) and the self-electric and self-magnetic forces of the

equilibrium beams. Shown in (a) is for Case I with single particle canonical angular momentum

f{, =0, and in (b) for Case II with single particle canonical angular momentumﬁe /4e =-0.99.

Figure 5. Plot of the effective beam core radius 7,(s) versus the propagation distance s for

mismatched beam propagation corresponding to Case I. The solid curve is obtained from the self-
consistent simulation, whereas the dotted curve is obtained by numerically solving the envelope

equation (8) with the emittance calculated in the self-consistent simulation.

Figure 6. Plots of particle distributions in phase space at s =34.7, 37.8, 42.0, 44.1, and 46.2 cm

. for Case L.

. Figure 7. Plots of the halo radius (solid curve) and core radius (dashed curve) as a function of

~ the propagation distance s for Case I.
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Figure 8. Plot of the effective beam core radius r,(s) versus the propagation distance s for

mismatched beam propagation corresponding to Case II. The solid curve is obtained from the
self-consistent simulation, whereas the dotted curve is obtained by numerically solving the

envelope equation (8) with the emittance calculated in the self-consistent simulation.

Figure 9. Plots of particle distributions in phase space at s =31.5, 33.6, 36.8, 39.9, and 42.0 cm
for Case II.

Figure 10. Plots of the halo radius (solid curve) and core radius (dashed curve) as a function of

the propagation distance s for Case II.
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in periodic focusing transport systems
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Test particle motion is analyzed analytically and numerically in the field configuration consisting of
.the equilibrium self-electric and self-magnetic fields of a well-matched, thin, continuous, intense
charged-particle beam and an applied periodic focusing solenoidal magnetic field. The self fields are
determined self-consistently, assuming the beam to have a uniform-density, rigid-rotor Vlasov
equilibrium distribution. Using the Hamilton-Jacobi method, the betatron oscillations of test
particles in the average self fields and applied focusing field are analyzed, and the nonlinear
resonances induced by periodic modulations in the self fields and applied field are determined. The
Poincare surface-of-section method is used to analyze numerically the phase-space structure for test
particle motion outside the outermost envelope of the beam over a wide range of system parameters.
For vacuum phase advance o, =80°, it is found that the phase-space structure is almost entirely
regular at low beam intensity (phase advance 0=70°, say), whereas at moderate beam intensity
(30°=0=70°), nonlinear resonances appear, the most pronounced of which is the third-order
primary nonlinear resonance. As the beam intensity is further increased (0=<30°), the widths of the
higher-order nonlinear resonances increase, and the chaotic region of phase space increases in size.
Furthermore, the many chaotic layers associated with the separatrices of the primary and secondary
nonlinear resonances are still divided by the remaining invariant Kolmogorov—Amold—-Moser
surfaces, even at very high beam intensities. The implications of the rich nonlinear resonance
structure and chaotic particle motion found in the present test-particle studies are discussed in the
context of halo formation. © 1999 American Institute of Physics. [S1070-664X(99)03409-6]

L lNTRObUCT]ON beams can also cause halo formation. The mechanism of

halo formation in rms-matched beams has been identified
with chaotic particle motion?! and nonlinear resonances oz-
curring in the vicinity of the boundary of phase space occu-
pied by the particles in the beam core. Invarant
Kolmogorov-Amold-Moser (KAM) surfaces' play an im-
portant role in confining halo particles transverse to the di-
rection of beam propagation. .

The purpose of this paper is to analyze the dynamics of;
test particles in the field configuration consisting of the equi-
librium self-electric and self-magnetic fields of a well-

Halo formation and control in intense charged-particle
beams has been the subject of recent vigorous theoretical,
computational, and experimental investigations.!® It is of
fundamental importance in the development of next-
generation high-intensity accelerators for basic scientific re-
search in high-energy and nuclear physics, as well as for a
wide variety of applications ranging from heavy ion fusion,
accelerator production of tritium, accelerator transmutation
of nuclear waste, spallation neutron sources, and high-power

O
I

free-electron lasers. In these high-intensity accelerators,
beam halos must be controlled in order to minimize beamn
losses and activation of the accelerator structure.,

It is well known that a space-charge-dominated beam
can develop a sizable halo if there is a root-mean-square
(rms) mismatch between the beam and the transport
system.2-4810-12 The mechanism for halo formation in rms-
mismatched beams has been well developed in the particle-

core model.*® When there is a sizable mismatch, the halo can
_contain a substantial fraction (up to 15%) of the entire beam.

Recently, it has been shown theoretically>*!316 that in
periodic focusing transport systems, radial nonuniformities
in charge density in rms-matched space-charged-dominated

YElectronic mail: chenc@psfc.mit.edu

1070-664X/39/6(9)/1/11/515.00

matched, thin, continuous, intense charged-particle beam and
an applied periodic focusing solenoidal magnetic field. Un-
like previous studies of halo formation in rms-mismatched
beams and rms-matched beams with nonuniformities in
charge density,l'zo this paper addresses the fundamental
question of how the phase:space structure varies with beam
intensity, focusing field strength and beam rotation under the
best conditions corresponding to a matched equilibrium
beam. Therefore, in the present analysis, the self fields?? are
determined self-consistently, assuming the beam to have a

uniform-density rigid-rotor Vlasov equilibrium
distribution2?*  which  includes the  well-known
Kapchinskij-Vladirmirskij ~ (KV)  beam equilibrium
distribution® as a special case. Using the Hamilton—Jacobi

method, the betatron oscillations of test particles in the aver-

© 1999 American Institute of Physics
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age sclf ficlds and applicd ficld arc analyzed, and the nonlin-
ear resonances induced by periodic modulations in the self
ficlds and applied field are determined. The Poincaré surface-
of-section method™ is used to analyze the phase-space struc-
ture for test particle motion outside the outermost envelope
of the beam over a wide range of system parameters. It is
found that the phase-space structure changes significantly as
the canonical angular momentum (P,), beam intensity (as
measured by SK/er or 0/0,), vacuum phase advance o,,
or beam rotation (w,) is varied. The implications of the rich
nonlinear resonance structure and chaotic particle motion
found in the present test-particle studies are discussed in the
context of halo formation. By examining the intrinsic prop-
erties of phase space of test particle motion outside of a
perfectly matched beam as a function of beam intensity, fo-
cusing field strength and beam rotation, we gain valuable
insights as to which operating regimes are more or less ro-
bust against the ejection of halo particles from the beam
under small beam mismatch and/or collective excitations in
the beam core.

To briefly summarize, based on a comprehensive study
of the phase-space structure for test-particle motion for
vacuum phase advance o,=80°, we find that the phase-
space structure is almost entirely regular at low beam inten-
sity (phase advance 0=70°, say), whereas at moderate beamn
intensity (30°<0=<70°), nonlinear resonances appear, the
most pronounced of which is the third-order primary noalin-
ear resonance. As the beam intensity is further increased
(0==30°), the widths of the higher-order nonlinear reso-
nances increase, and the chaotic region of phase space in-
creases in size. Furthermore, the many chaotic layers associ-
ated with the separatrices of the primary and _secondary
nonlinear resonances are still divided by the remaining in-
variant KAM surfaces, even at very high beam intensities.
Therefore, in the context of the present test-particle analysis,
chaotic layers do not form an extended chaotic region in
phase space. In actual beam propagation expériments, how-
ever, it is expected that sufficient beam mismatch or pertur-
bations about the periodically focused beam equilibrium can
cause the particles to cross the invariant surfaces and form a
halo.

The organization of this paper is as follows. After a dis-
cussion of the theoretical model and assumptions in Sec. II,
the betatron oscillations and nonlinear resonances are ana-
lyzed using the Hamilton-Jacobi method in Sec. III. The
:phase-space structure of test particle motion over hundreds
of lattice periods is examined numerically in Sec. IV. Con-
clusions are given in Sec. V.

~ll. THEORETICAL MODEL AND ASSUMPTIONS

In the present analysis, we consider a thin, continuous,
intense charged-particle beam propagating in the z direction
with characteristic axial velocity B¢ and kinematic encrgy
Zblmcz through the periodic focusing solenoidal magnctic

cld

B =B e~ 1B/ ()(xe, 4 ye). ()

4 A

T
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Here, e, and e, arc unit Cartesian vectors perpendicular to
the becam propagation dircction, s =z is the axial coordinate,
xe +ye, is the transverse displacement from the beam axis
at (x,y)=(0,0), the superscript “‘prime’’ denotes d/ds with
B (s)=dB,(s)/ds, and the axial component of magnetic
field satisfies

B (s+S)=B,(s), (2)

where § is the axial period of the focusing field.

To determine the self-electric and self-magnetic fields®
consistently, we make the following assumptions: (a) the
Budker parameter v=N,q%/mc? for the beam is small com.-
pared with ¥, ; (b) the axial momentum spread of the beam
particles is small in comparison with y,mB,c; (c) the beam
is axisymmetric (#/d6=0); and (d) the beam is perfectly
matched into the focusing field with uniform density profile
over the beam cross section,

Nylmri(s),  0<r<ry(s)
ny(r:s) 0, r>ry(s). (3
In Eq. (3), r=(x2+y%)" is the radial coordinate, ry(s)
=r,(s+5) is the outer envelope of the beam, and N, .
=2m[gnyrdr=const. is the number of particles per unit
axial length. The periodic outer beam envelope r,(s)=r,(s
+§) corresponds to a special solution of the beam envelope

equationzm4
2
dzrb K Er
+rls)ry— —— =0, . 4
dSZ .f( ) b rb rbS ‘ ( )

where K=2¢?N,/ ﬁﬂimcz is the normalized perveance,
KZ(S)=[qu(S)/2'beme2]2=[QC(S)/2ﬁbC]2 is the focus-
ing parameter, e7= const. is the total unnormalized emit-
tance, g and m are the particle charge and rest mass, respec-
tively, and ¢ is the speed of light in vacuo. The transverse
phase-space distribution that self-consistently generates the
density profile in Eq. (3) is discussed in the Appendix.
Consistent with the thin-beam assumption (r,<S), the
scalar potential for the self-electric field E*= —V ¢° is deter-’;
mined from B

19 é¢°
;}?r-a—r'=_4qub(r’5)’ (5)

where use has been made of the approximation VZEVE .
Integrating Eq. (5) for the density profile in Eq. (3), and
applying the boundary condition ¢*(r=r,, ,s) =0 at the wall
of a perfectly conducting cylindrical tube with constant ra-
dius r,, yields

&°(r,s)
qNb(l—r2/r§)+2qNbln(rwlr,,), 0=<r<ry(s)
T 2gNyin(ruir),  ry(s)<r<r..
(6)

B.ecausc the axial momentum spread is assumed to be negli-
gibly small, the vector potential for the sclf-magnetic field

Bf'=VX(Aje,) is given approximately by
AL(r.s)= By (r,s), N
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where B,¢ is the characteristic axial velocity of the beam.

In the analysis of the particle motion, it is convenijent to
transform to the Larmor frame?® which rotates with angular
velocity d8,/ds=—x (s)= —=qB(s)2y,Bymc? relative
to the laboratory frame, i.e.,

x(s)=x(s)cos[O.(s)]+y(s)sin 8,(s)], (8)

¥(s)==x(s)sin( .(s)] +y(s)cos[ 6,(s)]. ©)

In cylindrical coordinates (r,6) in the Larmor frame, the
equations of motion transversc to the direction of beam
propagation can be derived from the normalized Hamiltonian

1 P;

- — 1 - -~
H.(r,B,,Bys5)= 5(P;+ F—ze) + -2-K:(s)r2+ zﬁ(r,s), (10)

where the normalized self-field potential ¢(r,s) is defined
by

- q o~
l//(r!s)_W¢ (_r,s)

(KL= 7 2r¥(s)]+ K In[ry, iry(5)],
OSr—'<r,,(s)

Kin[r, /7],

an

ry(s)<r<r,.

From Egq. (10), the equations of motion can expressed as

dr Jd g =p 2
Z;—Bﬁ, L= (12)
g 4 P (13)
ds  4p, toF

B, o9_ P} -9

_d;____.a_r L_r?—xz(s)r—a—;l,/f(r,s), (14)
dF,,_ . 0 5
ds 0§Hi— ' "

It follows from Eg. (15) that the canonical angular momen-
tum is conserved, i.e., :

Py=xP,~yP_=const, (16)

which is expected for axisymmetric beam propagation. Com-
bining Egs. (12) and (14) yields

dr _ P 0
Ez*q(:ﬁ—f;** a—;.tﬁ(f,-v)— - (17)

For a particle in the beam interior (r<r,), the equation of
motion (17) is intcgrable. For a particle outside the beam
(r>ry), the equation of motion is sencrally nonintegrable?!
because of the nonlinear dependence of Y/ dr on the radial
coordinate 7.
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1.10

0.0 0.5 1.0 1.5 2.0
s/S :

FIG. 1. Plot of the normalized beam radius ry(s)/r, vs normalized propa-
gation distance 5/S for intense beam propagation through a periodic step-
function lattice. Here, r,, /r,=5 is assumed, and the choice of system pa-
rameters corresponds to: 7=0.2, $2x.=6.5, and SK/ep=4.0.

lll. ANALYSIS OF NONLINEAR RESONANCES

In this section, we analyze the nonlinear resonances in
the particle motion in the Larmor frame described by Eq.
(17). To simplify the notation, we omit the *‘tilde’’ in Lar-
mor frame variables in the remainder of this paper. For
present purposes, the Hamiltonian in Eq. (10) is expressed as

HL(r,P,,Pa,S)zHo(f,P,,Pg)+H1(r,P,,Pg,S). (18

where
Hy(r,P,,Pg)= 3} PI+Vo(r,Py)
1, 1_, P; o
EEP,-.-EKZr +E—z+z//(r,s)|,b(,)=;b, (19)
H(r,P,,Pg,5)= %[Kz(s)-Ez]r?-H//(r,s) ,
"¢("v-")|r,,(:)=7b- (20)

In Egs. (18)-(20), ¢(r,s) is defined in Eq. (11), and the
effective mean beam radius 7, is defined by

ol

Ve

= 1 y
=l (21
where cr=erfj+sdslr;;(s) is the space-charge-depressed
phase advance for the rigid-rotor Vlasov equilibrium. The

effective mean focusing parameter «, occurring in Etls. (19)
and (20) is defined by

. K s%
K==+ . (22)
Ty, Tp

Physically, the Hamiltonian H, provides a good approximate
description of the (slow) betatron oscillations, whereas the
perturbation H; describes nonlinear resonances induced by
the (fast) oscillations in «,(s) and ry(s).

For future references, Fig. 1 shows a plot of the normal-
ized beam radius r,(s)/r, versus normalized propagation
distance 5/S, obtained numerically by integrating the beam
envelope equation (4) for intense beam propagation through
a periodic step-function lattice with

N
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FIG. 2. Plots of the normalized effective potential (S7ep)Vo(r,Py) [Eq.
(19)] vs norrnalized radial coordinate r/r, for intense beam propagation

through a periodic step-function lattice. Here, re (7,,= 5 is assumed, and the
two cases comrespond to the choices of system parameters: (a) 7=02,
§'x;=6.5, SK/er=40, and P,/e;=0, and (b) 7=02, S¥k,=65,
SK/er=4.0, and Po/e;=0.7. For both cases, the vacuum and space-
charge-depressed phase advances are o, =68° and o= 18.6°, respectively.

k,, 0ss<pSn
K(s)=4 0, nSR<s<S—7nS2 (23)
K,, S—7SI2<5<S.

Here, &, =const., k (s+S5)=k,(s), and 7 is the so-called
filling factor for the lattce. In Fig. 1, r,, ITy=5 is assumed,
and the choice of system parameters corresponds to: 7=0.2,
S*k,=6.5, SK/er=4.0. The vacuum and space-charge-
depressed phase advances are found to be o,
=erfI"Sds/r}(s)|g=0=68° and o=erfiTS dsiri(s)
=18.6°, respectively.

A. Betatron oscillation frequency

Because P, is a constant of the motion and Hy is inde-
pendent of s, the unperturbed motion described by the
Hamiltonian Hj, is integrable. Figure 2 shows a plot of the
normalized effective potential (S/ep)Vy(r,Pg) versus nor-

“'malized radial coordinate r/r, for intense beam propagation

through the periodic step-function lattice defined in Eq. (23).
In Fig. 2, r,/ry=5 is assumed, and the two cases corre-
spond to the following choices of system parameters: (a)
7=0.2, §?x,=6.5, SK/e;=4.0, and P,/e;=0; and (b)
7=0.2, §%x,=6.5, SK/e7=4.0, and P,/e;=0.7. For both
cases shown in Fig. 2, the vacuum and spacc-charge-
depressed phase  advances are given by o,
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Py=0

(a)

0.0 0.5 1.0 1.5 2.0

0.0 05 1.0 1.5 2.0
r/r,

FIG. 3. Plots of constant-fy contours for several values of (S/ep)H, as
labeled in the phase space (r,P,) for the same choices of system parameters
as in Figs. 2(a) and 2(b), respectively. .

=erf; " dsir($)k=0=68" and o=e[{* ds/ri(s)=18.6°,
respectively. As illustrated in Fig. 2, the effective potential
Vo(r,Py) has a minimum at r=rq, where ry is defined by
|Pol/er, |Pol<er
={ [K+(K*+4x.P)) PVIK+(K* + 459",
|Pol>er.

Wl

(24)

In Fig. 3, constant-H, contours are plotted in the phase spacqf- ,
(r,P,) for several values of (S/e7)Hy, and the same choices’
of system parameters as in Fig. 2. For P4/e7=0.7 and speci-
fied value of Hy, the particle undergoes betatron oscillations
about r=r,, corresponding to motion on constant-H, con-
tours in the phase space (r,P,) as shown in Fig. 3(b). In
general, the betatron oscillation frequency depends on the
amplitude of the oscillations.

To determine the betatron oscillation frequency, we em-
ploy the Hamilton-Jacobi method?’ and perform a canonical
transformation from (r,P,) to the action-angle variables
(¢.J). Let W(r,J) be the characterstic function satisfying
the partial differential equation

1{ow\?
5(-3;) +Vo(r,Pg)=Hy=const. (25)
As discussed below, the dependence of W on J is uniquely
determined because of the one-to-one correspondence be-
tween Hy and J [see Eq. (29)]. A formal expression for the
angle variable ¢ is given by
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W

= TR (26)

The action variable J can be expressed as

1 1 Ty
m ar==[ " GtHo- vy,

27
where the tumning points r. solve the algebraic equation

Ho=Vo(r=,Py), - (28)

and r.>r_ is assumed. Because the action variable J in-
creases monotonically with increasing Hy, Eq. (27) can be
inverted to yield a Hamiltonian of the form

Ho=Ho(J,Py). (29)

The betatron oscillation frequency can then be expressed as

3,

(30)
which, in general, must be evaluated numerically. Before
presenting numerical results, we discuss two special cases,

For particle motion inside the mean beam envelope with
r+<ry, it is readily shown from Eq. (27) that the action
variable can be expressed as

3Ho , P 31)
T 20 2 (

where use has been made of Egs. (21) and (22). 1t follows
from Egs. (30) and (31) that the betatron oscillation fre-
quency is given by

BT TS 2

which is independent of the amplitude, as expected for par-
ticle motion in the beam interior. Note that the factor of2in
Eq. (32) arises from the fact that in the present description of
the betatron oscillations, the radial coordinate r= (x?
+y)" is used as a generalized coordinate, instead of a
Cartesian coordinate, say x.

As the outer oscillation amplitude r, increases well be-
yond the mean beam envelope (r3), the oscillation frequency
increases because the influence of space charge on the beta-
tron oscillations becomc less pronounced. In the limit where
r+>1,, the betatron frequency is given by

(33)

where o, =er[1*5 ds/ri(s)| g is the vacuum phase ad-
vancc.

Figurc 4 shows a plot of the betatron oscillation fre-
“quency wg versus normalized betatron oscillation amplitude

(r+=rg)/ry for the same choices of system parameters as in
Figs. 2 and 3.
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FIG. 4. Plots of the normalized betatron oscillation period 27l wgS [Eq.

(30)] vs normalized betatron oscillation amplitude (r, — ro)/ry for the same
choices of system parameters as in Figs. 2(a) and 2(b), respectively,

B. Nonlinear resonances

Under the influence of the perturbation H 1» 2 variety of
nonlinear resonances occur due to the coupling of the (slow)
betatron oscillations and the (fast) oscillations in the focus-
ing parameier Kk.(s) and associated modulation in the beam
envelope ry(s). The locations and widths of the nonlinear
resonances are analyzed in this section.

Making use of the action-angle variables (,J) dis-
cussed in Sec. IIIA, we express the total Hamiltonian H
formally as

H($,J,P5.5)=Ho(J,Py)+H,($.1.5). (34)%

Expanding H| in a Fourer series representation in ¢ and s,
we obtain :

H1= z

1—2 an,(J)exp[i(n¢+217rs/S)],

(35)

where the Fourier coefficients a,,(J) arc given by

1 S 2w :
anl)= 55| ds [ Tagh (1,6,
Xexp[—i(n¢+21ms/S)]. (36)
A mnonlinear resonance occurs when the resonance condition
d¢ 2w 2%

ng‘b_‘+“§—‘3"wp(f.Po)+T=0 (37)

is satisfied. Of particular interest in the present analysis are
the primary nonlinear resonances with /= — | that satisfy the
resonance condition
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27
nugll, Po)= 5, (39)

where J, determines the location of the primary resonance of
order n in the phase space (¢,/), le,atJ=J .

To estimate the width of the nth-order primary reso-
nance, we retain a single resonance term in the Fourer series
in Eq. (20) and express the Hamiltonjan approximately as

H(¢,J,Py,s)
=Ho(/.Pg)+2|a, _ (J))|cos(np—2ms/S + a, -1).
(39)

Here, o, _|(J) is the argument of the complex Fourier co-
efficient a,_;, and use has been made of a, _,
=]a,,__llexp(ia,,‘_,)=a’f,,,l. Expanding Hy(J) about J
=J,, the Hamiltonian in Eq. (39) can be approximated by

H(;ﬁ,j,Pg,:)EHo(.l,,,P9)+wB(J,l,P9)(J—J,‘)
1 4

+ 5 EMﬂ(J,Pg),]:]n(J_Jn)Z

+2|an -1(J,)]cos(np~2s/S

+ay _y). (40)

Performing a canonical transformation with ¢~27xs/nS
+a, y/n—¢ and H—»H—Z-n-]/nS, the Hamiltonian in
Eq. (40) becomes

J.P =l .‘_9.0_)_5 (57)2
H(d)v ’ 9,5) 2 3./ ( J)
J=1,

+2|a, _1(J,)]|cos(n @)+const, (41)

where 8/=J~J,, and use has been made of the resonance
condition in Eq. (38). It follows from Eq. (41) that the full
width of the nth—ordex" primary resonance is given by

AJ = 321an._1<Jn)lJ‘” @)
" | (wglan), oy
in the action variable, or equivalently by
ar
Ar,= (E,-)P'_,=,"AJ" (43)

in the radial coordinate.

The procedure for evaluating the resonance width AJ, in
Eq. (42) is the following. First, to determine (awﬁ/&l)h,’l
and associated quantities such as J», Eq. (38) is solved nu-
merically in terms of outer turning point ry=r(J,,¢=0)
=79, using Newton's method. This gives the values of r.,
Jar Ho(r,,Pp), (aw,,/ar)mn, etc. Using the chain rule for

'differen[iation, this procedure also allows the numerical

evaluation of (awﬁlal)h,n. Second, to determine the Fou-
rier coefficient a, -1(4,), the Hamiltonian perturbation
Hi(Jp,,5) is computed numerically on a two-dimensional
mesh in the variables ¢ and s, where ¢ ranges from 0 to 27
and s ranges from 010 §. A two-dimensional discrete Fourier
transform is thep used to evaluate the Fourier coefficicnt
@n,~1(J5), instead of the continuous representation in Eq.
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FIG. 5. Plots of the locations and full widths of the primary resonances of
order n=3-6 obtained for the choices of System parameters corresponding
to: (a) #=0.2, o, = 80° (S?x,=8.712), g=262° (SK/e7=338), w,=0, and
Pg=0; and (b) 7=0.2, o,=80° (S, =8.712), 0=262° (SK/er=38y,
w,=0, and P,/e;=0.7. The solid lines correspond to the analytical esti-
mates given in Eq. (42), whereas the dotted lines are obtained by integrating
Eg. (17) numerically. :

(36). Finally, the resonance width AJ, (or corresponding
resonance width Ar, in radial coordinate 7) is obtained by .
substituting the values of a, —1(J,) and (3wﬂ/al),=1" ihto
Eq. (42).

Figure 5 shows plots of the locations and full widths of
the primary resonances of order n=3-§ obtained for the's
choices of system parameters corresponding to: (a) =02,
0,=80° (S%k,=8.712), o=262° (SK/er=3.38), w,=0,
and Pg=0; and (b)) %=02, o,=80° (52k,=8.712),
0=26.2° (SK/er=3.8), wy=0, and Pyler=0.7. In Fig. 5,
the solid lines correspond to the analytical estimates.given in
Eq. (43), whereas the dotted lines are obtained by integrating
Eq. (17) numerically. For the lower-order primary nonlinear
resonances with n=3, 4, and 5, the analytical estimates are
in good agreement with the numerical results. For the sixth-
order primary nonlinear resonance, however, we cannot ob-
tain an analytical estimate of its width because numerical
noise becomes sizable in computing the Fourier amplitude
a —1-

° The nonlinear resonances for the cases presented.in Figs.
5(a) and 5(b) are further illustrated with the Poincaré
surface-of-section plots®' shown in Figs. 6(a) and 6(b), re-
spectively. Here, the Poincaré surface-of-section plots are
generated by plotting the successive intersections of 15 test-
particle trajectories, obtained from numerical integration of
Eq. (17), with the phase space (r P\ av rhs 1oess

s
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FIG. 6. Poincaré surface-of-section plots in the phase space (r,P,) for 15
test particle trajectories moving through the periodic step-function lattice
from s/5=0 to 1000 under the influence of the space-charge forces in 2 KV
beam equilibrium. Here, the choices of Systems parameters in (a) and (b) are
the same as in Figs. 5(a) and S(b); respectively.

s=0,5,25, ...,1000S. Evidently, the locations and widths
of the primary nonlinear resonances shown in Fig. 6 are in
agreement with those shown in Fig. 5.

IV. PHASE SPACE STRUCTURE

In this section, use is made of the Poincaré surface-of-
section method to examine the phase-space structure de-
scribed by the Hamiltonian H in Eq. (18). Of particular in-
terest are the nonlinear resonances and chaotic particle
motion of test particles outside the boundary of the phase
space occupied by the interior beam particles making up the
rigid-rotor Vlasov equilibrium distribution So (Refs. 23 and
24) in Eq. (Al). The phase-space boundary of the rigid-rotor
Vlasov equilibium is a closed surface in the three-
dimensional phase space (r,P,,Py) at any given axial dis-
lance s. A projection of such a boundary onto the phase
'space (r,P,) can be determined from

(M, +w,Po~ 1(1-wp)erlp,.o=0, (44)

"V_Vherc Pr, Pg, and H; are defined in Egs. (A4), (AS5), and
. (A7), respectively. Substituting Eqs. (A2)-(A5) and (A7)
into Egq. (44) yields

P ors(s) r r2

Figurc 7 shows plots of the normalized canonical angular
momentum Pg/er versus normalized radius r/r, described
by Eq. (45) for the following choices of system paramecters:

FIG. 7. Plots of the normalized canonical angular momentum Pgler vs
normalized radius r/r, calculated from Eq. (45) for the choices of system
parameters: (a) w,=0 and (b) w;=09.

(2) wp=0 and (b) @, =0.9. All of the interior beam particles
in the equilibrium distribution are enclosed by such a loop
shown in Fig. 7.

The phase-space structure for test particle motion is il-
lustrated by the Poincaré surface-of-section plots shown in
Figs. 8-10 for a wide range of system parameters. The Poin-
caré surface-of-section plots in Figs. 8-10 are generated by
plotting the successive intersections of test-particle trajecto-
ries, obtained from numerical integration of Eq. (17), with
the phase space (r,P,) at the lattice points s=0.5S, 1.5S, i
2.58, etc. s

Figure 8 shows Poincaré surface-of-section plots in the® -
phase space (r,P,) for 15 test particle trajectories moving
through the periodic step-function lattice from s/S=0.5 to
1000.5 under the influence of the space-charge forces in a
KV beam equilibrum. In Fig. 8, the choices of system pa-
rameters correspond to: (a) o,=80°, %=02, o=11.0°
(§K/er=10), w,=0, and Py/er=0; and (b) o,=80°,
7=0.2, 0=11.0° (§K/er=10), w,=0, and Pyler=045.
For both cases shown in Fig. 8, one test particle is initialized
at the phase-space boundary of the KV equilibrium distribu-
tion, and the corresponding test-particle orbit is represented
in Fig. 8(a) by the inner curved arc approaching r/r,=1, and
in Fig. 8(b) by the innermost contour extending from r/rg,
=0.54 to 0.84. The remaining test particles are initialized
outside the beam, i.e., outside the phase-space boundary of
the KV equilibrum distribution. Some of these particles un-
dergo chaotic motion. By comparing Fig. 8(a) with Fig. 8(b),
it is evident that the phase-space structure changes signifi-
cantly as the canonical angular momentum Py is varied. In
particular, it is interesting to observe that there are many
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FIG. 8. Poincare surface-of-section plots in the phase space (r,P,) for 15
test particle trajectories moving through the periodic step-function lattice
from 5/5=0.5 to 1000.5 under the influence of the space-charge forces in a
KV beam equilibrium. Here, the choices of system parameters correspond
to: (a) o,=80° %=02, e=11.0° (SK/er=10), w,=0, and Poler=0;
and (b) o,=80°, 7=02, o=11.0° (5K/er=10), w,=0, and Pyler
=0.45.

nonlinear resonances and chaotic regions in the vicinity of
the phase-space boundary of the KV equilibrium distribution
for the case shown in Fig. 8(a) (P4=0), whereas the non-
linear resonances and chaotic regions are well separated, by a
dense set of invariant curves, i.e., KAM surfaces,?! from the
phase-space boundary of the KV equilibrium distribution for
the case shown in Fig. 8(b) (Py/e;=0.45). In general, as
the canonical angular momentum P, increases in magnitude,
the noalinear resonances and chaotic regions move further
away from the phase-space boundary of the KV equilibrium
distribution. Consequently, for a KV equilibrium, particles
with Pg=0 are the most likely to escape from the beam
interior to enter into chaotic regions in phase space, forming

“a halo.

The Poincaré surface-of-section plots in Fig. 9 illustrate
how the phase-space structure varies as the beam intensity,
measured by the normalized parameter SK/ €7, 1s increased.
The choices of system parameters in Fig. 9 corrcspond{ to

~0,=80° 7=02, 0,=0, and Py/e;=0 at the following

normalized beam intensities: (a) SK/er=0.5 (c=66.8°), 1))
SKler=1.0 (6=56.3°), (c) SK/er=3.0 (6=31.5°), and (d)
SK/er=17.0 (0=15.4°). For the low-intensity case shown in
Fig. 9(a), the phase space is almost entirely regular. For the
moderate-intensity cases shown in Figs. 9(b) and 9(c), non-
linear resonances appear. The most pronounced among these
resonances is the third-order primary nonlinear resonance.
As the heam intensity is further increased. the widrhe o7
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FIG. 9. Poincaré surface-of-section plots in the phase space (r,P,) for 15
test particle trajectories moving through the periodic step-function latii ce
from s/5=0.5 to 1000.5 under the influence of the space-charge forces in a
KV beam equilibrium at several beam intensities. Here, the choices of sy's-
tems parameters correspond to o, =80°, 7=0.2, w,=0, and P,/e;=0 at
the following normalized beam intensities: (a) SK/er=0.5 (0=66.8°), (b)
SK/er=1.0 (6=56.3°), (c) SK/e;=3.0 (¢=31.5), and (d) SK/e;=7.0
(o=15.4°). .

higher-order nonlinear resonances increase, which is evident
from Fig. 9(d). In general, the nonlinear resonances and cha-

olic regions increase in size as the beam intensity is in-
Araacnd
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FIG. 10. Poincaré surface-of-section plots in the phase space (r,P,) for 15
test particle trajectories moving through the periodic step-function lattice
from 5/5=0.5 to 1000.5 under the influence of the space-charge forces in a
rigid-rotor Vlasov equilibrium. Here, the choices of system parameters cor-
respond to: ¢,=80°, 7=02, ¢=11.0° (SK/er=10), w,=0.9, and (a)
Pgler=0, (b) Py/er=—0.45, and (c) Pyler=-09,

The influence of beam rotation (w,#0) on the phase-
space structure is illustrated by the Poincaré surface-of-
.section plots shown in Fig. 10. The choices of system
‘parameters in Fig. 10 correspond to: o0,=80°, 7=0.2,
o=11.0° (SK/er=10), @,=0.9, and (a) Pgler=0, (b)
Pgler=-045, and (c) Py/er=—09. For all three cases
~shown in Fig. 10, the innermost orbit corresponds to a test
particle that is initialized at the phase space boundary of the

" rigid-rotor Vlasov equilibdum. By comparing Fig. 10 with
Fig. 8 for the KV distribution where the beam rotation is
absent (w,=0), we find that the presence of beam rotation
terids to reduce the degree of chaotic behavior in phase
space. This is evident when we compare Fig. 10(c) with Fig.
8(a). For both cases shown in Fig. 10(c) and Fig. 8(a), the
value of Py is chosen such that the boundary of the equilib-
rium distribution extends to r=r, {see Fig. 7 or Eq. (45)]

Phase space structure for matched intense charged-particle beams ]

Finally, we discuss the implications of the rich nonlincar
resonance structurc and chaotic particle motion for beam
halo formation. Based on a comprehensive study of the
phase-space structure for test-particle motion for vacuum
phase advance o, =80°, we have shown that the phase-space
structure is almost entirely regular at low beam intensity
(phase advance 0270°, say), whereas at moderate beam in-
tensity (30°<0=<70°), nonlinear resonances appear, the most
pronounced of which is the third-order primary nonlinear
resonance. As the beam intensity is further increased
(0=30°), the widths of the higher-order nonlinear reso-
nances increase, and the chaotic region of phase space in-
creases in size. Furthermore, the many chaotic layers associ-
ated with the separamrices of the primary and secondary
nonlinear resonances are still divided by the remaining in-
variant KAM surfaces, even at very high beam intensities.
Therefore, in the context of the present test-particle analysis,
chaotic layers do not form an extended chaotic region in
phase space. In actual beam propagation experiments, how-
ever, it is expected that sufficient beam mismatch or pertur-
bations about the periodically focused beam equilibrium can’
cause the particles to cross the invariant surfaces and form a
halo.

V. CONCLUSIONS

Test particle motion has been analyzed analytically and
numerically in the field configuration consisting of the equi-
librium self-electric and self-magnetic fields of a thin, con-
tinuous, intense charged-particle beam and an applied. peri-
odic focusing solenoidal magnetic field. In the present
analysis, the self fields were determined self-consistently, as-
suming the beam to have a rigid-rotor Vlasov equilibrium
distribution. The canonical equations of motion for indi-
vidual test particles were derived from a Hamiltonian. Using
the Hamilton—Jacobi method, the betatron oscillations of test
particles in the average self fields and applied field were
analyzed, and the nonlinear resonances induced by periodic i
modulations in the self fields and applied field were deters, "
mined. Analytical estimates of the locations and widths of
the primary nonlinear resonances were found to be in good
agreement with Poincaré surface-of-section plots obtained by
integrating numerically the equations of motion.

Use was made of the Poincare surface-of-section method
to analyze the phase-space structure for test particle motion
outside the outermost envelope of the beam over a wide
range of system parameters. It was found that the phase-
space structure changes significantly as the canonical angular
momentum (P,), beam intensity (as measured by SK/ey or
o/a,), vacuum phase advance o, , or beam rotation (wp) is
varied. For an intense beam with KV equilibrium distribution
(w,=0), it was shown that the chaotic regions approach the
phase-space boundary of the equilibrium distribution as the
canonical angular momentum P, decreases in magnitude.
Consequently, when there are perturbations about the equi-

‘librium, particles with zero canonical angular momentum are

the most likely to escape from the beam interior to enter into
the chaotic regions, forming a halo. The phase-space struc-
ture was also analyzed for test-particle motion under the in-
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fluence of the self fields of an intense beam with a rigid-rotor
Vlasov cquilibrium distribution (w,#0). It was found that
the presence of beam rotation reduces the degree of chaotic
behavior in phase space.

For 0,<80°, the test-particle analysis showed that at
very high beam intensities, the chaotic layers associated the
separatrices of nonlinear resonances are still divided by the
remaining invariant KAM surfaces and do not overlap com-
pletely to form an extended chaotic region. Although the
chaotic layers do not form an extended chaotic region in the
context of present test-particle analysis, any sizable beam
mismatch or perturbations about the periodically-focused
beamn equilibrium may cause particles to cross the invariant
surfaces, thereby resulting in a halo. ‘
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APPENDIX: RIGID-ROTOR VLASOV EQUILIBRIUM

The transverse phase-space distribution that self-
consistently generates the density profile in Eq. (3) is given
by the rgid-rotor Vlasov equilibrium distribution
function®?**

Ny 1
fUR,Pg,Pg)= m%"ﬁ*‘wa’e“ i(l'wzz,)«fr .
(A1)

In Eq. (A1), wy=const. (—1<w,<1) is a parameter mea-
suring beam rotation relative to the Larmor frame. The not-
malized canonical phase-space variables (R,0,Pg,Pg) are

related to the Larmor-frame phase-space variables
(;’Evﬁr’Fﬂ) b)’
< Ver .
=——__'.r'
rp(s) (a2)
0=5, (A3)
po= 1 d_ _.d
R—\ﬁ:—; "b(-‘)d r ’dsfb(s) ' (A4)
_ Po=Py, (AS)
through the generating function
rt
F,(r,6,P =
z(r R,P@ S) ( )rPR+0P9 ( )dS (S)
(A6)

The effective transverse Hamiltonian ’H; occurring in Eq.
(A1) is defined for R<Ver (or equivalently for r<r,) by

Chen, Pakter, and Davidson

H_(R.P P)-r;’(s)[h’ (R,Pr.Pg,s) L kLl i
RePreFol= wPo)m g KIS
1 . Po
>\ Prt 3T +R3), (A7)

where H.(R,©,Pg,Po.s)=H (r,P,,Py,s)+dF,/0s is
the Hamiltonian expressed in the canonical variables
(R,0,Pz,Pg).

For a particle moving in the beam interior (R< \/_T or
equivalently r<ry), it follows from the Hamilton equations
of motion, dR/ds=dH, /3Py, dO/ds= BH 1dPg,
dPglds=—0H, /R, and dPglds=—9H, /60=0, that
the effective transverse energy H, is a constant of the mo-
tion, although the transverse Hamiltonian H , in general, is
not a constant of the motion. Because H, is independent of
O, the canonical angular momentum Pg is also a constant of
the motion, in agreement with Egs. (16) and (AS5). Therefore,
the equilibrium distribution function 12 satisfies exactly the
steady-state nonlinear Vlasov equation

af" oH, aﬂ; oH, dfy

3Py R R 3Pg (A8)
with afglas 0. Making use of fdx'dy’---
= [e;-lr,,(s)R][dPRdPe it is readily shown that

ny(r,s)=fdx"dy jﬁ is mdced identical to the step- funcuon )
density profile defined in Eq. (3).
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Guiding Optical Light in Air Using
an All-Dielectric Structure

Yoel Fink, Daniel J. Ripin, Shanhui Fan, Chiping Chen, John D. Joannopoulos, and Edwin L. Thomas

Abstract—The emergence of a dielectric omnidirectional mul-
tilayer structure [1]-[4] opens new opportunities for low loss
broad-band guiding of light in air. We demonstrate the ef-
- fectiveness of such an approach by fabricating a broad-band,
low-loss hollow waveguide in the 10-;:m region and measuring its
transmission around a 90° bend. The generality- of the solution
enables the application of the method to many wavelengths of
interest important in telecommunication applications as well as
for guiding high-power lasers in medical and other fields of use.

Index Terms— Dielectric, high-power lasers, hollow wavegu-
sides, light conduits, low-loss broad-band transmission, medical
lasers, multimode waveguide, omnidirectional reflectors, optical
fibers, optical confinement, single-mode waveguide.

I. INTRODUCTION-

UIDING light in dielectric fibers has had a tremendous

impact on many aspects of our life—we rely on fiber
optics for communications as well as for illumination and
a host of medical applications. The typical optical fiber has
a high index core and a low index cladding such that the
light is confined to the core by total internal reflection.
Two inherent drawbacks exist in this approach: the first is
absorption. Since the light is traveling through a dense medium
for long distances, material absorption becomes significant
even in low loss materials. To compensate for losses the fiber
is doped with erbium which is used to amplify the signal.
This in turn limits the bandwidth of the fiber to that of the
narrow erbium excitation lines. The other weakness follows
from the confinement mechanism—total internal reflection
which confines light only of a limited angle. Conventional
optical fibers cannot guide light around sharp turns, which is
especially important in optical integrated circuits. Light guided
in a hollow waveguide lined with an omnidirectional refiecting
film propagates primarily through air and will therefore have
substantially lower absorption losses. In addition, the confine-
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ment mechanism does not have angular dependence allowing
for guiding light around sharp bends with little or no leakage.

Most hollow waveguides fabricated to date [5]-[7]; have
internal metallic and dielectric layers. It has been shown [8]
that the addition of dielectric layers to a metallic waveguide
could lower the losses significantly. In contrast, our system
is an all dielectric waveguide which confines all frequencies
contained in its omnidirectional range. In principle this type of
structure can have lower losses than the combined metal and
dielectric structure since the waves do not interact with a lossy
metallic layer. Although our proof of concept demonstration
involves a large diameter multimode waveguide, one can’
fabricate a much smaller tube that could in principle be made
to support a single mode. '

II. PRINCIPLE OF OPERATION

A schematic of the hollow tube is presented in Fig. I,
as well as the index of refraction profile. In a realistic
light guiding scenario involving many bends there exist no
global symmetries and thus one cannot distinguish between
independent TE and TM modes. Locally one can define a plane
of incidence with respect to the normal to the film surface and
the incident wave vector. Light entering into such a tube will
invariably hit the walls many times and explore a wide range
of angle of incidence of both polarizations with respect to any
local plane of incidence. Since the air region is bounded by
a structure that has a gap which encompasses all angles and
polarizations the wave will be reflected back into the tube and
will propagate along the hollow core as long as k, # 0.

III. SAMPLE PREPARATION PROCEDURE

A Drummond 1.92 mm o.d. silica glass capillary tube was B
cleaned in concentrated sulfuric acid. The first tellurium layer
was thermally evaporated using a LADD 30000 evaporator
fitted with a Sycon Instruments STM100 film thickness moni-
tor. The capillary tube was axially rotated to ensure uniformity
during coating. The first polymer layer was deposited by dip
coating the capillary tube in a solution of 5.7 g polystyrene
DOW 615APR in 90 g toluene. The next layer is tellurium
deposited in the same method outlined above. The subsequent
polymer layers are made of polyurethane diluted in mineral
spirits. The device has a total of nine layers, five Te and four
polymer and a total length of 10 cm. The layer thickness
are approximately 0.8 um for the tellurium layer (refractive
index 4.6) and 1.6 um for the polystyrene layer (refractive
index 1.59). An optimal design will vary the layer thickness
according to the zeros of the Bessel functions. Performance as

0733-8724/99$10.00 © 1999 IEEE
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Fig. 1. Cross section of the hollow waveguide showing the hbllow core and

the dielectric films, also shown is the index of refraction profile in the radial
direction.
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Fig. 2. (a) Measured (dashed) and calculated (dots) normal incidence re-
flectance for hollow waveguide in the radial direction. (b) Calculated grazing
incidence reflectance for the TM mode.

well as the layer thickness were monitored by IR spectroscopy.
The reflectivity of the deposited structure was measured in
-the radial direction using a Nicolet FTIR microscope and a
variable size aperture, to ensure domination by radial reflec-
tion. The coated capillary tube was then inserted in a heat
shrink tube which was filled with silicone rubber. Finally, the
“glass tube was dissolved using concentrated hydrofluoric acid
_.(48%). The resulting hollow tube assembly is thus lined with
the mirror coating and is both flexible and mechanically stable.

IV. RESULTS AND DISCUSSION.

. The reflectance measurements and simulations are shown
for normal incidence in Fig. 2(a). The measured gap width is
smaller than predicted, probably due to microdefects in the Te
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Fig. 3. Hollow tube transmission measurement setup on the spectrophotome-
ter (FTIR).
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Fig. 4. Transmission through the hollow waveguide around a 90° bend as
a function of wavelength. . .

layers. In addition there are absorption (8 pm) peaks due to the
polyurethane. Fig. 2(b) is the calculation of the reflectance at
grazing incidence for the TM mode. Since the omnidirectional
frequency range is defined from above (high frequency edge)
by the normal incidence gap edge (arrow) and from below
by the grazing incidence gap edge (arrow) the extent of the
gap is completely defined by these two data points. The extent
of the omnidirectional range for the parameters used in this
experiment is approximately 40% [1], [2].

The transmission through the tube was measured using a
Nicolet Magna 860 FTIR bench with an MCT/A detector. They ;
transmission was measured around a'90° bend at a radius of
curvature of approximately 1 cm, which was compared, to
the straight tube transmission to correct for entrance and exit
effects. A schematic of the measurement layout is presented
in Fig. 3.

The results shown in Fig. 4 indicate a high transmission
around the 90° bend for a spectral band that corresponds to
the omnidirectional gap. The relatively high noise level in the
measurement is due to the lack of purge. This measurement
provides a proof-of-concept indicating the low loss characteris-
tics and guiding abilities of the all dielectric hollow waveguide.
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An investigation is made of the effects of nongyrotropic equilibrium distributions in the phase angle
of p, on the stability properties of a relativistic electron beam propagating along and gyrating about
an applied uniform magnetic field. Perturbations are assumed to vary spatially only in the direction
of the applied magnetic field, so that generated electromagnetic and longitudinal electric fields
propagate parallel to the applied field. The two equilibrium distributions considered are the
time-dependent distribution fo(p, ,p.,&) with £=¢—Q.t/y and the axial-dependent distribution
folpy.p;,¢) with {=¢—mQ z/p.. A Vlasov-Maxwell analysis leads to integral equations
relating the field Fourier components. These equations reduce to algebraic equations when no spread
in y is present in the time-dependent equilibrium distribution and when no spread in p, is present
in the axial-dependent distribution. Numerical computations for these special cases show that a rich
variety of stability properties are obtained by changing the distributions in £ and {. © 1998

American Institute of Physics. [S1070-664X(98)03309-6]

I. INTRODUCTION

During the past two decades, extensive studies have
been made of the stability properties of a relativistic electron
beam propagating along an applied uniform magnetic field
Boéz."12 If the beam possesses a population inversion asso-
ciated with the component of momentum perpendicular to
the field (p, ), then this system may be subject to the whis-
tler and cyclotron-resonance maser instabilities, which ini-
tiate the process of converting electron-beam kinetic energy
into coherent electromagnetic radiation. The cyclotron-
resonance maser instability provides the basis for existing
and proposed electronic amplifiers and oscillators such as the
gyrotron and the cyclotron-autoresonance maser.">"2* With
the inclusion of thermal background electrons in addition to
the beam, this instability is of interest in such problems in
space- and astrophysics™C as the generation of auroral ki-
lometric and Jovian decametric radiation.

In this paper, we carry out a stability analysis of this
system (exclusive of an ambient thermal background) using
Vlasov-Maxwell theory. We make the assumption that the
spatial variation of all quantities is in the z-direction only;

- however, the electron beam is not assumed to be gyrotropic
in the phase angle ¢ of the component of the particle mo-
mentum normal to the z-axis. Most previous analyses of this
system assume that the equilibrium distribution is of the
form fo(py .p,), ie., that the beam is gyrotropic. Analyses
of the nongyrotropic case are limited in number. Using the
eikonal approximation, Fruchtman and Friedland have con-
sidered the case of a stationary amplifier with a nongyrotro-

© pic equ1lxbnum distribution of the form fo(p,,p,,!)

=p.'8(p.=P10)8(P,~P:0)8({). Where {=d—mQ z/p,

and {2, is the nonrelativistic cyclotron frequency. Both a

“Permanent address: Department of Physics, Clark University, Worcester,
Massachusetts 01610.

1070-664X/98/5(9)/3416/24/515.00
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fluid model7 and a kinetic model® were employed
Fruchtman® has extended the kinetic model (without employ-
ing the eikonal approximation) to include a thermal spread in
the transverse momentum. Kho et al.,!° using the same equi-
librium distribution, have dropped the assumption of a sta-
tionary amplifier but assume that the left-hand polarized per-,
turbed radiation field can be ignored. Chen er al.’® consider
TE modes for the case of a helical relativistic electron beam

.in a cylindrical waveguide. In an application to space plas-

mas, Freund et al.?’ consider the case of a diffuse electron

beam propagating in a cold magnetized ambient plasma: The
beam is coherent in phase, and has a thermal spread in p n
but no spread in p, .

Two equilibrium distributions are introduced in Sec. II
These are the time-dependent distribution fo(p, ,p,.£)
where §=¢—{.t/y and the spatial-dependent distribution
folpy.p.,l) where {=¢—mQ.z/p,. By manipulating
Fourier transforms of the Vlasov-Maxwell equations, we ob- .
tain sets of equations relating components of the perturbe‘d'
right- and left-hand polarized eleciromagnetic and the elet-’
trostatic fields. For the time-dependent equilibrium, these re-
lations are given in Egs. (26)—(28). The relations for the
spatial-dependent equilibrium distribution appear in Eqgs.
(41)-(43). In either case, these relations are integral equa-
tions, not algebraic equations. Equations (26)-(28) reduce
algebraic equations only if there is no spread in p (i.e., in ¥)
in the time-dependent equilibrium distribution. Moreover,
Egs. (41)—(43) reduce to algebraic equations only if there is
no spread in p, in the spatial-dependent equilibrium distribu-
tion.

The analysis of these integral equations is the subject of
current research and is not dealt with further in this paper.
Instead, in the remainder of the paper, we deal with cases in
which the integral equations reduce to algebraic equations.

Stability properties for the case of the time-dependent
equilibrium distribution with no spread in p are considered

© 1998 American Institute of Physics




Phys. Plasmas, Vol. 5, No. 9, September 1998

in Sec. III. Most generally, spreads in the pitch angle a
= [:m"(p_L /p.) and the phase angle ¢ may be present. In this
case, the integral equations (26)—(28) reduce to just three
algebraic relations presented in Eq. (58) of Sec. IIl A. The
corresponding exact dispersion relation, relating complex
frequencies and complex wave numbers, is the three by three
determinant relation in Eq. (64). In Sec. ITI B, we consider
the more restrictive case of no spread in the pitch angle « in
the equilibrium distribution. (Then, both p, and p, have
definite equilibrium values.) In this case, the dispersion rela-
tion in Eq. (64) reduces to the tenth-degree polynomial rela-
tion in Eq. (69). Numerical computations of growth-rate
curves (Im @ vs £, real) and properties of eigenmodes of Eq.
(58) are presented in Sec. Il C for the case of definite equi-
librium p, and p, and various equilibrium distributions in ¢.

An analogous treatment is given in Sec. IV for the case
of the axial-dependent equilibrium distribution with no
spread in p.. Spreads in p, and ¢ are still permitted. For
this case, it is shown in Sec. IV A that the integral equations
(41)—(43) reduce to the three algebraic relations in Eq. (89).
The exact dispersion relation for the system is given by the
three by three determinant equation (95). Although no as-
sumption of a steady state has been made in the derivation of
Eg. (95), the result in Eq. (95) is the same as that obtained in
the steady-state analysis of Ref. 9. In Sec. IV B, the addi-
tional condition that there be no equilibrium spread in p, is
imposed. Then (as in the time-dependent case) the dispersion

relation reduces to the tenth-degree polynomial equation-

(100) relating the complex frequency and complex wave
number. Numerical computations of growth-rate curves and
properties of the eigenmodes of Eq. (89) for this case are
presented in Sec. IV C.

A summary of our results and conclusions is presernted
in Sec. V.

Il. FORMULATION OF THE PROBLEM

A beam consists of relativistic electrons, which propa-
gate along and gyrate about a uniform magnetic field B,
= Bye,. Initially the beam is in an equilibrium state in which
temporally and spatially varying electromagnetic fields are
absent. The initial growth rates of these fields are obtained
by regarding them as small perturbations on the equilibrium.
The system is treated as one dimensional in the sense that the
spatial variation of all variables is in the z-direction only.
Consequently, only electromagnetic waves propagating par-
allel or antiparallel to the uniform field By are included in
this analysis. Furthermore, equilibrium self-fields are as-
sumed to be negligibly small, so that results discussed below
are limited to the case of a small ratio of the plasma fre-
quency to the cyclotron frequency.’

A. Equilibrium distributions

A single-particle momentum p can be described by the
components p, , p,, and ¢, where ¢ is the phase angle (as
shown in Fig. 1). This paper deals with two systems in which
the phase angle ¢ is not necessarily random in the equilib-
rium distribution. One simple constant of the single-particle
motion involving ¢ is £=¢— (Q./y)1, where Q.
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y

FIG. 1. The phase angle ¢ and the pitch angle a of the single particle
momentum p.

=eBy/mc is the nonrelativistic electron cyclotron frequency,
—e and m are the electron charge and rest mass, respec-
tively, ¢ is the speed of light in vacuo, ¢ is the time, and y
=(1+p¥m?*cH)2=(1 +pf_/mzc2+pf/m2c2) 172 is the rela- .
tivistic mass factor of the electron. An equilibrium distribu-

tion of the form

o) =fop1 e b), S0

where
e o
= - —t,
E=¢ 5

corresponds to an equilibrium electron beam that is homoge-
neous in the configuration space at any given time. Since the
equilibrium distribution (1) is nonstationary in the momen-
tum space, we refer to it as the time-dependent equilibrium
distribution.

Another simple constant of the single-particle motion in-
volving ¢ is ke

(=p-—f=¢-m 2 G)

where v is the electron velocity. Use of { gives rise to an
alternative equilibrium distribution

Fo(zP)=FolpL o). @)

In this case, the equilibrium distribution is constant in time at
any given z. It is analogous to a typical laboratory situation
where the beam is introduced into the interaction region at
some initial z=0 with a given distribution in ¢. Then, if
interactions with the electromagnetic- field are excluded, the
electrons move along the field lines with constant v, and
gyrate around them with the constant relativistic cyclotron
frequency {2./y. Consequently, the phase at any value of z
is the phase at z=0 plus Q.z/yv,. We refer to this distri-
bution as the axial-dependent equilibrium distribution.

The time- and axial-dependent distributions are illus-
trated with examples in Fig. 2. It is shown in the Appendix
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FIG. 2. Schematic diagrams of (a) the time-dependent phase distribution at
a single instant of time for the case where £=0 for all particles, and (b) of
the axial dependent distribution for all time for the case where {=0 for all
particles.

that the two distributions in Egs. (1) and (4) are physically
different in the sense that neither can be transformed into the
other by a Lorentz transformation.

In the remainder of this section, we derive linearized
equations relating components of the perturbed electromag--
netic fields for each of the distributions in Egs. (1) and (4).

B. Perturbation analysis for the time-dependent
equilibrium distribution

The equilibrium distribution is of the form in Eq. (1),
ie, fo(p.)=folpy P2 E)=fo(pL.ps,&—Q.tly). The
distribution is assumed to be periodic in £ and (for fixed t) in
¢ with period 2m. Consequently, the normalization of
folpy p..¢—Kt/y) over momentum space is time-
independent and is defined by

f_:dpzf:dm f027d¢pjo(pl P P— %r) =1. (5)

As time progresses, the distribution evolves under per-
turbations into

fz.p.)=fo(p.1) + fi(z,p:0), (6)

where f,(z,p,?) is considered to be a small perturbation. To
first order in the perturbation, the time evolution of this
quantity is governed by the linearized Vlasov equation,

df

d:o

a f
=Efl(zrpvt)+vzb—zfl(z'pvt)

e
~ ZVxXBy-Vofi(z.p.1)

val

=8(E1+ )'fo‘O(vapyjpz,t)» (7)

c
where the total time derivative is along a characteristic of the
unperturbed motion [ie., z(t+7)=z+v,7, p,(t+7) =p,,
pi(t+7)=p,, ¢(t+7)= P+ 7/v, and the variable of in-
tegration 7 is in the range from —< to 0]. The fields Ey(z,t)
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and B,(z.t) are regarded as small perturbations governed by
Maxwell’s equations, which in the present treatment reduce
to

& 1 ¢ 47 9
—E . (z,t)— 5 —E(zt)=——T(2,1), (8
822 l_(Z ) Cz (9[2 l_( ) Cz it |_( ) ( )

QJIQ,

a3 ]
— = - -
aZEl:(Z,t) *2 th_(z.t), . 9

aEl:

—(z,t)=47p,(z.1), (10)
9z

By, (z,1)=0. (11)

In the above equations:

El:(zrt)_—_'Elx(Z,t)tiEly(zvt)r (12)
Bl:(zvt)=le(zvt)iiBly(Z-t)’ (13)
Ji=(z.0)=—en fd3 FizpnZE (14)
1% Z, 0 p 1 'p' _Ym»
p;(z,1)="‘enof d*pfi(z.p.1), (15)
pe=ymv.=p,exp(xid), (16)

where ng is the mean electron number density. The fields -
(Ey-,B,-) and (E,,B ) represent right- and left-hand .
circularly polarized transverse electromagnetic waves, re-
spectively, whereas the field (E,,,B,,=0) describes longi-
tudinal (electrostatic) waves.

Because most of the integration of Eq. (7) along charac-
teristics is standard, not all of the details will .be given
here. We remark that before integrating, it is convenient to
express the x- and y-components of the vectors that appear in
Eq. (7) in terms of v., E,., and B,.. Moreover,
Ofo(Px Py P2 )P, Ifo(ps.py,P. 1) 9Py, and 3fo(p s,
Py-p;-t)/dp, must be expressed in terms of
afO(Pl P ,§)/3pl ’ 3f0(17l Pz »§)/‘9Pz ’ afO(pJ. P2 y§)/3§y
because the latter partial derivatives are constant on a char-
acteristic. Once these constant derivatives are removed from
the integral sign; the subsequent calculation of the Fourier
transform of f,(z,p,t) is facilitated by rewriting them in
terms  of dfo(py.Pe ®t)dpy, dfo(py.pr.d0)dp
dfo(py.p: $,1)/3¢, and dfo(p, .p,.#,t)/dt. The expres-
sion obtained for f(z,p.t) is
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0

Q.
Hlzpr,pd.8)=Ulp, ,P;y¢,I)J' dTCXp(i—Y-T)El-(z+U:T.I+ 7)

p.LQc 0

e d
+ sexp(i¢) Pl ggfo(pi -p;-¢vf)f

Q.
3 drrexpl i—T|E_(z+v.7t+7)
m*c - Y

0 0,
+Vip, .p:,q'),t)j dTexp(i—y-r)B,_(z+uz'r,t+ 7)
0 _Qc
+U*(p, ,pz.¢.t)f d'rcxp(—iT-r)EH(z+va,r+r)
€ . pJ.‘Qc‘ d 0 .‘Qc
+ -z—exp(—x¢)7——5—l el ngo(h ,p2,¢,r)f_mdrfcxp —z—y-r Eii(z+tv,mt+7)

0 Q. 9
+ V*(pJ. vpzv¢nr)f dTexp( _577)Bl+(2+v17't+T)+e£f0(pl ’pz '¢7t)
— z

0 ep (. 9 Y
xf- dTEl:(Z+vZT,t+T)+?%QC—C2£fO(pJ_ ,p,,¢,t)f_ dv7E\ (z+v, 7,1+ 7). 17

In the above equation,

e 9 i 4
Ulpy.p,»$.1)=exp(i (——+————) Pz $ut),
Ulps 22 $i)= X095+ == Moo )
eexp(iqs)( 9 I p, a)
1% = —ip,—+ip, — + — — L B,t).
(Propes )= 5 = o\ TP g FiPL gt o g folPa e 800)

In order to relate components of the perturbed electromagnetic fields, it is necessary to obtain Fourier (or Laplace)
transforms of f,(z,p.t) [Eq. (17)] and of Maxwell’s equations (8)—(11). The simple assumption that all variables vary as
exp[i(kz—wn)] leads to inconsistent results. In general, one cannot assume an infinite series of terms of the form exp{ilkz
—(w—nQ./y)]} (where n is an integer), because v is not defined if fo(p, ,p,.£) contains an energy spread. In the present
analysis, we define the spatial and temporal Fourier transforms by

N !

| e w .
Flk,w)= E;f_mdzf_mth(z,t)exp[i(wt-—kz)], : ‘ ‘
(18)

1 (= ® '
F(z,t)= —2-1;f dkf dwF(k,w)expli(kz— wt)].
The calculation of the Fourier transform of f,(z,p,t), denoted by f,(k,p,w), requires use of the convolution theorem
1 £ @
(Fan)(k.w)=2—Wf dk'f do'Fy(k',@")Fylk—k' 0= 0'). (19)

Then, using Egs. (17)-(19), together with the Fourier transform of the Maxwell equation (9), and aséuming that orders of
multiple integrals can be interchanged, we obtain (after a lengthy calculation) the following expression for the Fourier
transform:
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+x
exp(i$) dw'{[w-w'—kvz—7
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i—
ap;  Pi 3‘11"/

w—w' —kv, [ 9 1 9 [Py ck d
w—o' "ymec w-o’ ap.

ry 4 ’ QC - pJ.Q
Xfolpooper o) T 0= 0" kv, = =2 12 Mfo(pl perb.0) | Er- (ko= o)
1 e . +:d , , Q]! w—-w’—kv,(_ 3 N 1 ﬁ)
+§-—-—\/,2;8XP( l¢) . w w—w _kvz+7 —-——a)t'r apL o a¢
; PL ck 'Qc 2 p.L‘Q'
ymec w—w' dp, JfO(pl Do)t oo~k + ] Pmic a¢fo(Pl P b0 )}

e += ' a :
XE (kyﬂ)”w')+_—f dw,{ w—w,_kv _li_ Wi vw’)
1+ \/ﬁ . [ . apzfo(p.l. p. ¢

, P

+o-w'—kv]” 73——2-

The Fourier transforms of the Maxwell equations (8) and
(10) are

(0> =2k E |+ (k,w)

27
—-4'rzenowj dpLJ' dpf d¢—'
Xexp(xid)f(k.py.p, .¢,w), (21)

kElz(k,lJ.))

= £ 2w
=47ﬂ'enofo dp, f_:dsz‘o dép.fi(k.p.p;» ¢, @).
(22)

By referring to Eg. (20), it is seen that Egs. (21) and (22) are
a set of integral equations {with variable of integration w')
relating the Fourier transforms of the fields £, . and E,,.

Partial derivatives of fo(p, .p,.®,w"') appear in the ex-
pression for fi(k,p,w) in Eq. (20). These derivatives are
removed from the integrands in Egs. (21) and (22) by inte-
grating by parts with respect to p, , p,, and ¢, employing
the periodicity of fo(py .p;.¢.»") in ¢. The procedure is
straightforward but requires much algebra.

The periodicity of fo(p, ,p,,€) in £ (or ¢) has not yet
been fully employed in this analysis. Expansion of
folpy .p,,€) in a Fourier series gives

+x

1
folpy »P:,§)=—7— >
2pn=—=

gn(py,p)exp(ing),  (23)

where

£n(pspo)= J—f dEfo(pr per)exp(—ing). (24)

¢fo(PJ. Dz Py w')}El (k,w—w'). : (20)

—

Because fo(p, .p;.£) is real, gx(py.p.)=g-n(pPy ;P;)r
From Eq. (23), we see that the temporal Fourier transform of

FoPs Pz ©)=FfolpL .Pyr$:t) is given by

+2 QC
folpy.p; 0. ) =,.=2= 8n(py.pexp(ind) 5( w—n 7) ]
| (25)

* With the aid of Eq. (25), the integrations over o’ can be

carried out in Egs. (21) and (22). Moreover, with the aid of
the relation [ g"d dexp(ind)=2md,, the integrals over ¢ can
also be completed. In fact, only the n=0,1, and — 1 terms of
the infinite series in Eq. (25) contribute to the right-hand
sides of Egs. (21) and (22). In the nonrelativistic limit of
=1, the integral equations in (21) and (22) reduce to alge-
braic equations relating the Fourier transforms of the fields
E,. and E,, because of the Dirac delta function in Eq. (25).
However, m the general case, y=(p%/m?® c2+1)"2—[(pJ_
+p Z)/m ¢+ 1]"”. Consequently, Egs. (21) and (22) remain,
integral equations in the two variables p, and p,, relanﬁg;"
such unknown functions as E,_(k,w+2Q./¥(p, .p,)),
E, (k,o+Q./¥(py.p,)), and E| . (k,w).

Equations (21) and (22) can be reduced to a set of inte-
gral equations in the single variable p by replacing the vari-
ables p, and p, with the new variables p and a, where a
=tan"!(p, /p,) is the pitch angle shown in Fig. 1. Setting
dp,dp,=pdpda in the equations obtained from Egs. (21)
and (22), we obtain the following set of simultaneous inte-
gral equations relating the Fourier transforms of the per-
turbed fields E; . and E,:

D__(k,0,Q.)E,_(k,w)

f " dpp? (k,w,Q..,p)E (k 29‘)
= - 'wr ce ,w—
0 PP prEs " p)
o , ’ Q
+ | dpp*x-Ak,0,Q.,p)E\\ kw———]|, (26)
0 y(p)’
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D+ +(kvw'Qc)El+(kvw)

z 20
=f dpp*xs_(k,w,Q.,p)E | k,w+ C)
0 ¥(p)
- 5 QC
+ | dppix+ k0, Q0 p)E | kot =],
0 ¥(p)

D, (k,w)E, (k,w)

* 0,
=J dpp2X1+(k!wyﬂc)p)El+(k,w_ )
0 ¥(p)

= a
+f dPPZXz-(k»wch‘P)El_(k,w‘f' ——‘)
0 ¥(p)

In the above integral equations:
D__(k,w,Q2,.)

V2w

— o222 YT |T i
w —c%k 2 ijo dpjo dapgy(p,a)

(28)

[Zpsina( kpcosa)( kpcosa QC) -1
X () R w— -——

Y ym ym Y

sm a -
p (w —czkz)(w—- -
; ym Y

D++(kvw'nc)=D——(krwr—Qc)'

D, (k,w)=1— \/2w0§fo dpfo dap?gy(p,a)

sina picos’a kpcosa
X 1- w-—
Y ');‘mzc:2 ym

2 ”
—+(ko,Q,,p)=- -Z—Qf,wfo dapg,(p,a)

 sicde 20\
X w—
P

QO
X ( w2—2w—-—c2k2)

Y
kpcosa Q.| 72
Xl w— -— )
ym Y

X+—(k!wvﬂc ’P)‘—‘Xt-y(k*aw*,—nc .P)»

X-(ko,Q ,p)=— Vwaﬂﬁfo dapg,(p,a)

2

sin“a [ wpcosa
X— —ck
Y'mc\ ‘ymc

kpcosa Q.\°*
Xl w— -
ym Y

-2
’

€)Y

(32)

(33)

(34)
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X+olk,w, 0 p)=xZ (k% 0%~ O p), (35)
x.- (k0,0 .p)
V2w L QT (T
= - —{) + —
3 Qp(w 7) fo dapg-\(p.a)
ina[pcosa Q. k -2
 Sin alp (w+—)—-ck ( B pcosa)
Ymc| yme Y ym
: w+& T2y (k* *+&Q p) (36)
"2 Y y I
X+ (k0. Q0 p)=xI_ (K", 0%, = Q. .p). (37)

Here (1,=(4 mnge?/m)'? is the nonrelativistic plasma fre-
quency.

Notice that the structure of Eqs. (26)~(28) is a coupling
of El—(kvw')! Elz(k'w’_ [QC/Y(p)])v and El+(kvw,
—[2Q,/¥(p)]) over the range of p for which the equilib-
rium distribution is nonvanishing.

C. Perturbation analysis for the axial-dependent
equilibrium distribution

The analysis for the case of the equilibrium distribution
in Eq. @), ie, foz.p)=folpL.P:.O)=folpPL .P: ¢
—m{).z/p,) is similar to the analysis of the previous section.
The distribution is assumed periodic in { and (for fixed z) in
¢ with period 27. Consequently, the normalization of
folpy .p; @—mQ.z/p,) over momentum space is indepen-
dent of z. It is defined to be '

B ] 2 ‘Q'c
f dpzfo dpJ.J;) d¢plf0(p,L .pz,¢—m;—z =1,
e ]

(38)

The linearized Vlasov equation for the system is the
same as Eq. (7) except that the factor fo(p,.py,p,,t) on the
right-hand side is to be replaced with fo(z,p,,py.p,)- Max-
well’s equations (8)-(16) are applicable without modxﬁca-
tion. The derivation of integral equations relating the Fourier
transforms of the perturbed fields involves a great deal of
algebra but closely parallels that given in Sec. II B for the
spatially homogeneous equilibrium distribution. Conse-
quently, we omit the details of the derivation. We remark
that in the present derivation z plays much the same role as ¢
in the previous derivation and k much the 'same role as w.

APenodxcuy of fo(py,p,.{) in { gives rise to the Fourier

series cxpanswn

+o

folpr penl)= = poexpling),  (39)

where

) 1 27
ha(py ,Pz)=‘/—2———-;Jo d{fo(py .p,.)exp(—=inl). (40)

For the z-dependent equilibrium distribution fé(p LiP®
-mQ . z/p,), the integral equations are
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D! _(k,w,Q1)E|_(k,»)

= 2mQ),
=J dp:77—+(kvw7‘Qc'p:)El+ k+ p W

m
k+

+f dp:ﬂ-z(kvwvnc'p:)El:

Z

D, . (kw,Q)E, (k)

= 2mQ),
=f' dpg];.-(k,m,ﬂc,p:)E,-(k- ,w)

= m{},
+j_ dpz77+:(k'wvnc’p:)El: p |, (42)

D;;(krw)El:(kvw)

mQ}, )
0
14

b4

= j_ dpzﬂz_(k,w,ﬂc,p:)El_(k_

= m)
] dp, 7.+ (k, 0, Qc.p)E 4| k+ >

4

In the above integral equations:

D! _(k,w,.)
NS

2 2
=w?—c%k*-

« z(w_&)(w_k_f’_z_&)“

ym ym Y
- Pl (0?— k)( _.kﬂl_'(_.l_‘—z
mw < ¢ ym ¥ ’

D', (k.w,Q.)=D" _(k,w,—8,),

Dz’z(k-‘”)= 1- VZWQ,Z;J'_gdP:L dp.piho(py.p;)

2 -
-1 P )( kpz) 2
1- el 1 Bl »
y*m*c? ym

77—+(k1w19c 1pz)

2z (= P

=—021| dp,h , _—t
9 4 0 Py 2(pJ. pZ)‘yBHIZCZ
2mil}. kp, Q.72
X| —w?+c2k| k+ 0= -—
p, ymo v

+—(kv“).0c vpz)= Uf+(k*""*'_06‘p:)’

Q.
,w), (41)

°,w). (43)

Ry f __dp: jo dpy ho(ps pa)—>

(44)

(45)

47)

(48)
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-

, (" Pl
n-:(kw,Qc,p)= J;Q;wf dp hi(py.p) 553
Y y'm-¢c~
kp. Q\°°
X(—wp, +kymc®)| - —-—|
ym Y
(49)
7]+z(k,w,Qc,p:)=Ufz(k*,W*y’Qc»P:), (50)

Vom Q2 Pl

7--(k,@,Q,,p. )-——-— pihopL.p)—=3
2k vme-
kp. c’k mQ,
x| = —+—| k-
ym  w p;
kp. -2
x| wo——] , ' (51
ym
77:+(kr“’19c ,pz)=77:‘_(kf,w*,—ﬂc,pz)- (52)

The structure of Egs. (41)-(43) is the coupling of -
E|_(F',w) 10 E\(k'+mQ./p,,0) and E (k' +2mQ./
p.,w) over the range of p, for which the equilibrium distri-
bution is nonvanishing.

D. Some special cases

In general Egs. (26)-(28) [Egs. (41) (43)] couple the
right- and left-hand circularly polarized radiation fields E, -
and the longitudinal, relativistic, plasma wave field E,,.
However, if g21(Py.P.)=8=1(p,@)=0[kx,(p,,p,)=0],
then Eq. (28) decouples from Egs. (26) and (27) [Eq. (43)
decouples from Egs. (41) and (42)] to yield the dispersion
relation for longitudinal plasma oscillations. The radia-
tion fields remain coupled. From Eq. (24) [Eq. (40)], it is
seen that this situation occurs whenever the Fourier series
for fo(py.p:r®— Qctly) folpy NP o m‘QcZ,pz)] con-
tains neither cos¢- nor sing@-components. .

If g22(ps p)=8=2(p.@)=0 [hay(p, ,p)=0] thed =
all three fields (E,. and E;;) remain coupled, however, the
radiation fields couple only through the electrostatic oscilla-
tions and not directly with each other. From Eq. (24)
[Eq. (40)], it is seen that this situation occurs whenever the
Fourier series for fo(py .pz-¢— (Qe/7)1) [folpy .per
—(mQ./p,)z)] contains neither cos2¢- nor sin2¢-
components.

Finally, if g+1(pL.P)=8=2(p1.p)=0 [h=1(pL.p)
=hay(py .ps)=0], then Eqs. (26)~(28) [Eqgs. (41)-(43)] de-
couple completely and reduce to the dispersion relations

D__(k,0,Q.)=0, (53)
D, (k,0,0.,)=0, (54)
D,.(k,)=0. (55)

These dispersion relations are identical to those for the case
in which the distribution in ¢ is uniformly random. Refer-
rng to Egs. (24) and (40), we see that go(p,.P:)
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= (U\2m) [§7dEfo(py P 6) and ho(p, .p.)= (1/{27)
Xfi"dnfo(p, .p,.m. For the case of a uniformly random
distribution in ¢ [i.e., fo(p, .p.)]. both of these expressions
reduce to go(py .p2) =ho(py .p)=\27fo(p, ,p;). For this
case either Eqs. (26) and (27) or Egs. (41) and (42) reduce to
the dispersion relations for the cyclotron resonance maser
with random phase obtained by Chu and Hirshfield.!

The analysis of Egs. (26)-(28) [(41)~(43)] as integral
equations is the subject of present research and results of the
analysis will be presented in a subsequent paper. However,
many important special cases exist in which the equations
reduce to algebraic equations from which dispersion rela-
tions can be derived. Some of these cases will be analyzed in
the remainder of this paper.

Ill. DISPERSION CHARACTERISTICS FOR THE TIME-
DEPENDENT EQUILIBRIUM DISTRIBUTION
WITHOUT ENERGY SPREAD

In the previous section, it was noted that, for a uniformly
random equilibrium distribution in ¢, Eqs. (26)-(28) de-
couple and reduce to the well known dispersion relations in
Egs. (53)-(55). In this section it is shown that as long as
there is no energy spread in the equilibrium distribution in
Eq. (1), the integral equations (26)-(28) reduce to algebraic
relations between the Fourier components of the fields even
when the distributions are not uniform in ¢. The dispersion
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A. Analysis

For a beam with a definite energy y(po)mc®= yymc?
=(pac?+m*c*)""* the most general distribution in Eq. (1) is
of the form

1 .
folp,@.§)= ";55(p-Po)fo(Po-&.§). (56)

where £€=¢—Q_t/y. From Eq. (24), the coefficients in the
Fourier series expansion of this-distribution are

. 1 . ’
gx(p.a@)= ?5(17"170)8,.@0'01),
(57)

. 1 2w '
g..(po.a)=\/—2——;fo d&fo(po.a.€)exp(—in).

Substitute Eq. (57) into Egs. (29)-(37) and then substitute
the results into the integral equations (26)—(28). After replac-
ing @ with w—2€./7, in Eq. (27) and with 0 —Q_./¥, in
Eq. (28), we obtain three homogeneous algebraic equations
relating just three field components. Expressed in matrix no-

tation, these equations are

characteristics are illustrated with numerical examples for ~DE=0, - (58)
the time-dependent equilibrium distribution with no spread .
inp, orp,. where
J
D"“(k’w’ﬂc’po) “,\:_4.(](,0),0‘. »Po) —/{/—z(kvwvnc’pb)
- 20, 20 . 20
-—X+_(k,w-————5,ﬂc,po) D++(k,w-———c,Qc,po) —X+z(k.w-——£,0c,po)
D= Yo Yo Yo , (59)
. Q, . Q Q
_XZ_(k,w—%,Qc,po) —Xz+(k,w"7—;"ﬂc,170) Dzz(k,w—?:,po) :
r
and D—-—(kywyﬂc 9p0)
E, (ko) 2 2,2 V2T o7 .
20 =w’—c“k -5 Q, o dago(po.a)
E,+(k,w—- - )
= Yo
E Q (60) o 2sina( kpocosa)( kpocosa Qc) -!
w= w— -—
E, (k,w— 7;) Yo Yom Yom Yo

The quantities /{’ii appearing in the matrix in Eq. (59) are
obtained from the corresponding quantities in Eqs. (32)~(37)
simply by replacing each g,,(p, @) with g,(p,,a) and setting
p=po and y= 7,. Moreover, from Eqs. (29)-(31), the diag-
onal matrix elements can be expressed as

2.3 -2
pesive . ( kpycosa Qc) ]
e % T a3 R
‘)’omzcz( : Yo Yo
(61)
D, (kw,Qc.po)=D__(k,w,—Q..po), (62)
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D::(k-vaﬂ)
sina
=1-v270? f dagy(py,a) —
Yo
picos’a kpgcosa 72
Xt 1- || @~ . (63)
7 m-c Yom

Recall that () ,= (4 me 2ny/m)'* is the nonrelativistic plasma
frequency.
The dispersion relation for this system is

detD(k,w)=0. (64)

From Eg. (60), it is seen that, for a given value of the wave
number k, the frequency w is that of the right-hand polarized
wave E;_. The corresponding frequencies of the left-hand
polarized wave E,, and of the electrostatic wave E,, are
w—20./yy and 0— Q. /7y, respectively. We point out that
once the assumption of one-dimensional spatial dependence
is made and equilibrium self-fields are neglected, the disper-
sion relation is exact for equilibrium distributions of definite
energy.

Again notice why, in the general case, the field compo-
nents are related by integral equations (26)—(28) instead of
algebraic equations. If the distribution fy(p,a,é
— .t/ y(p)) is nonvanishing over a continuous range of en-

ergies ¥( p)mc then the mode E| _ (k,) will be coupled to
a continuum of modes E; ,(k,0—2Q_/y(p)) and E, (k,w
-0 /y(p)).
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B. Case of definite p, and p,

As numerical examples, we consider equilibria of defi-
nite p, = pgsinay and p.= pcosa,. Consequently, the factor
Jopo. . £) in Eq. (56) is

- a—ap) -
fo(POvanf)"'—si—na—“‘(D(f), (63)

where ®(¢) is a function of period 2#. From Eq. (5), the
normalization condition on ®(¢§) is

[ago(o- 2= [Taso=1. o
), o0 e-=t)= | _—
Moreover, from Eq. (57),
. 1 Sa—ap)
8n(po. @)= e —gna-—osn ' (67
where
2w ‘ .
Sn= f d{D(§)exp(—inf). (68)
0 N

From Eq. (66), so=1. Also notice that s_,=s*
Substituting Eq. (67) into Eqs. (61)-(63) and into Eqs

(29)-(31) with g,(p,a) replaced by g,.(po.a), we can ex-
press the dispersion relation in Eq. (64) as the following

tenth degree polynomial equation (in either w or k) with real -
coefficients:

1 2\ 2
M--<1€,é»>M++<1€,«3>MzzU€,«I»)=—(—% BilsiPl(B.0— k)M , . (k,0)+(B,0—2B,~ F)*M __(k,)]

N~

-+

N

1
4

-
|

SIE
anlv N AT

In Eq. (69), w§= Q,z,/ Yo is the relativistic plasma frequency
squared, and w, =/, is the relativistic cyclotron fre-

- quency. Dimensionless frequencies and wave numbers are
w=w/w, and k=ck/w . Dimensionless velocities are given

by Bi=vyolc and B,=v,lc, where vy o=pgsinay/

Hpo)m and v o= pocosay/Hpg)m. Finally,

2

. . R " . w .
M__(k,w)=(w2—k-)<w—léﬂz—l)z—j(w—iﬁz)

l 2
X(w=— k,B—I)+— ,BL(w -k?), (70)

2 .
) Bilsi|}(@*—20—-E2)2M, (k)

3
),BJ_(szs_,'l-s 251)(w —20-k*)(B,0—28,—-k)(B,0—F). (692

r

My (k,0)=((0-2)*-k*)(0-kB,~ 1)
2

- 22 (- £B,~2) (= kB, 1)

1"’;27 2,4
+3 o FL(G-2= ), 1)
0)2
M (k,0)=(0-kB,— 1)~ — (1~ BD). (72)
wC

The dispersion relation in Eq. (69), which is valid for
both complex @ and complex k, is invariant under the trans-
formation
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FIG. 3. Distributions in phase ®(£) used in numerical examples. Plot (a) is a uniformly random (gyrotropic) distribution. Also shown: are plols of
nongyrotropic distributions for which (b) 5,=0 and 5,=sina/a, (c) s;=—4iK and 5,=0, and (d) s, =(2a)exp(~ia/2)sin(as2) and 5,= (1/a)exp(—ia)sina.

k——£*, oo —0*+2. ‘ (73)

For the case of the distribution in Eq. (65), the behavior of
the eigenmode E in Eq. (58) under this transformation is
easily determined by applying the transformation to the ele-
ments of D and E in Eq. (58). If either 5, #0 or 5,#0, then

Eiv(kho-2)  Ej.(—k*—a%) _ Ef_(kw)
E\-(k@) E_(-F*-6*+2) Er, (ho-2)
(74)
and, if s,#0,
EH(E,&;—Z) E | (—k* —o*) E}_(k,0)
Elz(/é,a‘,—l) E\(- k*—w+1) Ef(ko-1)
E,_(k) E,_(—ﬁ*,—&;*+2)_;ETJ,(E.&)—Q)S)
Ei(ko—-1) E(-F-o*+1) Ef(fo-1)

Equation (69) gives the ten branches of the dispersion
relation w(k). The behavior of w/k for large |£| is easily
determined for each of these branches. As [k|—o, @(£)/k
—+ 1 for two branches, @(k)/k— ~1 for two branches, and
cf;(lZ)/lE——»B: for six branches.

Simple expressions are easily obtained for the large ||

behaviors of (k) for all ten branches if either Sy Of §5
vanishes in Eq. (68). If s,=0 and 5,#0, then [from Egs.
(57) and (67)] g,(p,@)=0 and g,(p,a) #0. It follows from

the discussion in Sec. II D that the electromagnetic compo-
nents are coupled and the electrostatic component is un-
coupled. [Such a situation holds for (but is not exclusive to)
the distribution ®(¢) in Fig. 3(b), provided that the param-
eter a ¥ 7. For this distribution, s, =0 and s, =sina/a.] Two
of the branches pertain to the uncoupled electrostatic waves
and obey the exact dispersion relations

o=kp+1x—2 ”( . t76)

For sufficiently large ||, the remaining eight branches obey
the approximate dispersion relations

L U )

0= lzﬁger——ﬁl 1-]s,)"2, (78)
2 12

o= :(£2+ £, (79)
2\ 1n

=2:(£2+2§) , (80)
wC
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For real k, Eqgs. (77) and (78) give two branches with posi-
tive Im @ provided that |s,|<1. In this case, growth-rate
curves (Im @ vs real £) will show two unstable branches at
large .

If 5,#0 and s5,=0, then [from Egs. (57) and (67)]
g2(p,@)=0 and g,(p,a)#0. It follows from the discussion
in Sec. I D that the transverse electromagnetic waves are
coupled through the longitudinal electrostatic wave. [A non-
exclusive example of a distribution ®(£) having this prop-
erty (if K#0) is presented in Fig. 3(c). Using Eq. (68), we
find that s,= —4iK and s,=0 for this example.] In this case,
the large || approximations for four of the ten branches of
the dispersion relation are the same as those given in Egs.
(79) and (80) for the distribution previous case. Approxima-
tions for the remaining six branches are

Smipt 12 22 | 81
w= .Bz —\/EwCB_Lv ( )
g1z 8
w= )Bz' _\/ich+, (2)
kB 1 2 83
w=kf, _\/-2-ch-, (83)
where
— Bz 2 Bz 2 2'
K:=l+(%“(1_ﬂz) + ‘f'—(l—ﬂ;)

IART-
J . (84)

[The maximum possible value of X in Fig. 3(c) is 1/27, and
the corresponding maximum value of |s,| -is 2/#
=0.6366. .. . It is evident from Eq. (84) that the x .. are real
and positive for all |s,]<1/y2=0.7071.... Consequently,
Egs. (81) and (83) provide for two unstable modes at large
values of real £ for the distribution in Fig 4(c).]

A nonexclusive example of a distribution for which nei-
ther s, nor s, vanishes (unless the parameter a= 7 or 27) is
presented in Fig. 3(d). From Eq. (68), it follows that in
this example s,=(2/a)exp(—ia/2)sin(a/2) and s,=(1/a)
X exp(—ia)sina. If both 5, and s, are nonvanishing, deter-

1
+4Bi(1—ﬁf)(5—|sllz)

mining the large || behavior of the dispersion relation in Eq.

(69) is more difficult than in the previous cases. Four of the
large-| k| branches are given by Eqs. (79) and (80). The be-
haviors of the remaining six branches (including all that may

- show growth at large, real k) are determined by solving a
" cubic equation in (L:)—/:’B:— 1)2. Further details will not be

given in this paper.
Unless s, =s,=0, some of the eigenmodes E in Eq. (58)

will involve two or more of the components E,_(k,®), -

E\+(k,0—2),and E|,(k,@—1). A quantity that will be em-
ployed to measure the relative importance of E,_(k,®) and
E, +(k,0—2) is the Poynting flux ratio defined by

J. A. Davies and C. Chen

2

6 |

S.(ko-2)| Eio(k,o-2)
Tlo-2] ;

s (ko) | E_(ko) |

This quantity is the ratio of the time-averaged Poynting vec-
tors that the field associated with each component would
produce in the absence of the other component. A time-
dependent interference term due to the different frequencies
of the components is not included.

(85)

C. Numerical examples

In the following numerical examples, £ is restricted to be
real. Then, Im ®>0 indicates an unstable mode. If £ is re-
stricted to be real, then the transformation in Eq. (73) is
equivalent to inverting a plot of Re @ vs k (real) through the
point (£,Re w)=(0,1)and reflecting a plot of Im @ vs &
(real) through the Im w-axis. It follows from the invariance
of the dispersion relation in Eq. (69) under this transforma-
tion and from Egs. (74) and (75) that there is no loss of
generality if numerical examples are limited to the case of
nonnegative real £. o

Parameter values in all of the numerical examples below
in Figs. 4-7 are @2/@2=0.05, y9=2, and ay=04. In order
to ensure that values selected for s, and s, are realistic [i.e.,
correspond to ®(£)=0 in Eq. (65)], we assume that ®(&)
has one of the functional forms shown in Figs. 3(a)-3(d).

Example 1: If the distribution ®(¢£) is uniform [see Fig. .
3(a)], then s;=s,=0. [Such a distribution is also attained .
with a=r in Fig. 3(b), K=0 in Fig. 3(c), or a=2 in Fig.
3(d).] In this case, the dispersion relation in Eq. (69) de-
couples into the three independent relations M _ _(k,2)=0,
M, . (k,@)=0, and M, (k,»)=0. These are, respectively,
the dispersion relations for uncoupled right- and left-handed
circularly polarized electromagnetic waves and for the elec-
trostatic wave. For a given £, the frequencies of these waves
are @, o—2, and w—1, respectively. Growth-rate curves
(Im @ vs k) for this limiting case are presented in Fig. 4(a)
over the interval 0<%=<10. Corresponding plots of Re @ vs
k over the interval 0<£<1.4 are presented in Fig. 4(b). Let:
ters on these plots designate corresponding points on the two
diagrams. The points B and C in Fig. 4(a) coincide. The
growth-rate curve segments CDG and H/ are obtained from
M__(k,®)=0, and a corresponding eigenmode E in Eq.

' (58) has only E;_(k,®) as a nonvanishing component. The

growth-rate curve segments AB and FEJ are obtained from
M., .(k,®)=0. A corresponding eigenmode has only one
nonvanishing component, namely E, , (k,0—2).

The plot of Re @ vs £ in Fig. 4(b) is needed for the
proper interpretation of the growth-rate curves in Fig. 4(a). If
k>0 and Re @>0, then E,_(k,») and E,,(k,®) are, re-
spectively, components associated with right-hand polarized
(RHP) and left-hand polarized (LHP) waves that travel in the

forward (positive-z) direction. If £>0 (as before) but Re @
<0, th;n the handedness of these waves is unchanged, how-
ever, they now travel in the backward (negative-z) direction.

Similarly, the electrostatic wave associated with E | (£, ) is
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FIG. 4. Plots of complex @ vs £ (real) for the system parameters wf/wz
=0.05, yo=2, and ap=0.4. The time-dependent equilibrium distribution in
phase is characterized by 5,=s5,=0. Plots are (a) Im @ vs k for 0<k=<10
and (b) Re & vs £ for 0<k=<1.4.

backward traveling if £>0 and Re @<0. As an illustration
of the use of Fig. 4(b) in interpreting Fig. 4(a), consider the
segmented growth-rate curve A(BC)DG, which gives the
growth rate of the cyclotron maser instability. Segment AB
pertains to E,+(k,0—2). From Fig. 4(b), it is seen that
Re w—2<0 everywhere on AB. Consequently, the growth-
rate curve AB in Fig. 4(a) pertains to growing, backward-
traveling, LHP electromagnetic waves. Similarly, segment
CDG in Fig. 4(a) pertains to E,_(k,). Reference to Fig.
4(b) shows that Re ©>0 everywhere on CDG, so that
growth-rate curve segment CDG in Fig. 4(a) pertains to
growing, forward-traveling, RHP electromagnetic waves.
Similar analysis shows that the growth-rate curve HI for the
whistler instability pertains to forward-traveling, RHP elec-
tromagnetic waves. Also, the growth-rate curve segment FE
pertains to backward-traveling LHP waves, and the segment
EJ pentains to forward-traveling LHP waves. Because all of
the roots of M, (k @) are real, no corresponding growth-rate
curves appear in Fig. 4(a).
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Electromagnetic and beam waves are said 10 be in reso-
nance for the cyclotron maser instability when =% and w
=kpB,+ 1. These resonance values of @ and £ are given by
g,r=£,= 1/(1=B.). In this example, k,=4.94. Figure 4(a)
conforms with the well-known fact that no growth of RHP

radiation occurs at £=£, in an uncoupled system.
Finally, it is emphasized that no special relation exists

“between the LHP and RHP waves considered above when

s,=5,=0. However, the plots in Fig. 4 will be approached

by any system using our parameters in the limit in which

both 5, and s, approach zero.
Example 2: An explicit example of a nonuniform distri-

‘bution in phase is obtained by selecting a= /4 in Fig. 3(b).

Then the unperturbed electron beam consists of two streams
with respective distributions centered about £=0 and £= 7.
Each distribution is a water bag of width #/4. The corre-
sponding parameters defined in Eq. (68) are 5;=0 and s,
=2.2/4r. Because s;=0, the eigenmodes E in Eq. (58) are

of two types. The first type of eigenmode has only E k(ﬁ,w)
as a nonvanishing component. The corresponding dispetsion
relation is M ,(k,@)=0, which does not allow for growth.
[See Eq. (76).] The second type of eigenmode has two non-
vanishing components, namely E,_(k,®) and E (ko
—2). Some of these eigenmodes are unstable. :
Growth-rate curvés for this system for 0<£k<15 and
corresponding plots of Re @ vs k (for 0<k=<1.5) are pre-
sented in Figs. 5(a) and 5(b). As a measure of the rclanve
importance of the RHP and LHP electromagnetic waves as-
sociated with unstable modes, plots of the Poynting flux ratio
in Eq. (85) as a function of k (for unstable modes only) are
presented in Fig. 5(c). Letters show corresponding points in
Figs. 5(a)-5(c). By comparing Figs. 5(2) and 5(b), we see
that the growth-rate curve segments BA, CD, and FE per-
tain to modes consisting of a forward-traveling RHP electro-
magnetic wave (because Re ®@>0) and a backward-traveling
LHP electromagnetic wave (because Re @—2<0). All other
segments of the growth-rate curves pertain to modes consist-
ing of forward traveling RHP and LHP elchomagqgtic
waves. o
In the case of a uniform distribution in £ (example l) no
growth of RHP electromagnetic waves occurs at the reso-
nance wave number k=k,=4.94. [See Fig. 4(a).] The
growth-rate curve CDH in Fig. 5(a) shows a mode at k
=£,=4.94 which grows significantly faster than any mode
in Fig. 4(a). From Fig. 5(a), we see that the RHP Poynting
flux associated with the mode is almost 20 times the LHP
Poynting flux. Consequently, growth of RHP radiation is
now possible at £=£, although it must be accompanied by a _
smaller growing component of LHP radiation. We remark
that among computations so far carried out those for sy stems
with two- stream distributions in £ (with a phase difference of

1) show the most rapid growth rates at k= ﬁ
Referring to Fig. 5(a), we see that there are two unstable

branches at large £ in conformity with Egs. (77) and (78).

From Fig. 5(c), it is seen that, for either branch at large k, the
RHP Poynting flux is approximately double that of the LHP
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Poynting flux. Finally, note from Fig. 5(c) that for unstable

eigenmodes at small £ the ratio of the backward traveling
LHP Poynting flux to the forward traveling RHP Poynting
flux depends very strongly on the branch of the dispersion

relation and varies rapidly with £ for a given branch.

Example 3: As a second example of a nonuniform phase
distribution, select the form of ®(£) in Fig. 3(c) and choose
the parameter value K=1/27. [Equivalently, we could let
a= in Fig. 3(d).] Then the equilibrium particle phases are
uniformly distributed between £=0 and é= 7, and no par-
ticles have phases in the range 7<§<27. Fourier compo-
nents in Eq. (68) are s,=—2i/7 and s,=0. Because s,
=0, the field components E; _(k,®) and E, . (k,0—2) are
indirectly coupled through the electrostatic component
E ,:(IE,J)—- 1). Consequently, the eigenmodes E in Eq. (58)
will (in general) have three nonvanishing field components.
Growth-rate curves for this example are presented in Fig.
6(a) for 0<k=<10, and corresponding plots of Re @ vs £ (for
the interval 0<k<2) are given in Fig. 6(b). Plots of the
Poynting flux ratio in Eq. (85) are shown in Fig. 6(c). Fi-
nally, as a measure of the relative importance of the electro-
static component of the unstable eigenmodes, we present a
plotof 27V E, _(k,0)/E,(k,@—1)| vs k in Fig. 6(d). (The
factor of 272 appears in the field ratio because 2~ 12E 1+ 18
the proper normalization of coefficients of the complex unit
vectors for LHP and RHP waves when comparison is to be
made with Cartesian field components.) Letters show corre-
sponding points in Figs. 6(a)-6(d).

Reference to Figs. 6(a) and 6(b) shows that the wave
associated with the component E, , (£, @ —2) is left-hand po-
larized ‘and backwards traveling for eigenmodes on the
growth-rate curve segments GH, ABC, and DEF. The elec-
trostatic wave associated with E, z(I?,&)— 1) is forward trav-
eling for all unstable modes except for those modes on the
growth-rate curve ABC for which £ is very close to zero. All
other components of unstable eigenmodes represent forward-
traveling waves.

Referring to Fig. 6(a), we see that two unstable branches
of the dispersion relation are present at large values of £ in
conformity with Egs. (81) and (83). From Figs. 6(c) and
6(d), it is seen that the RHP Poynting flux exceeds that of the

" LHP electromagnetic wave by a factor of approximately 3

for both branches at large £. The electrostatic contribution to

. eigenmodes on the upper branch is relatively very small. On

the other hand, the electrostatic field amplitude in eigen-
modes on the lower branch is of the same order of magnitude
as the LHP electromagnetic field amplitude.

Two branches, MNO and GHI, show moderate growth

" rates at the resonance k=£,=4.94. Reference to Figs. 6(c)

and 6(d) shows that the RHP Poynting flux is significantly
larger than the LHP Poynting flux for the eigenmodes asso-
ciated with either of these branches at k=£,. Moreover,
|E)-(k,@)/E,,(k,0=1)|>10 for either branch at £=£,.
Again, this behavior is in contrast with the case of a uniform
distribution in ¢ where no growth of RHP electromagnetic

radiation takes place at the resonance value of £. However,
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FIG. 5. Dispersion relations and properties of corresponding eigenvectors
for system parameters wf/ wf,=0.05. Y=2, and a;=04. The tirne-
dependent equilibrium distribution in phase is characterized by s,=0 and

$3=22/7. Plots are (a) Im @ vs k for 0<k=<15 and (b) Re & vs £ for
0s<k<15. Also shown for unstable eigenmodes is (c) the Poynting flux
ratio in Eq. (85) vs £.




Phys. Plasmas, Vol. 5, No. 9, September 1998

(o) |

008+ ) 4

0.06

Imd

0.04

0.02

J. A. Davies and C. Chen 3429

-1

(ko

Iz

2"%g fla1/e

FIG. 6. Dispersion relations and properties of comresponding eigenvectors for system parameters wf/wf,=0.05, Y0=2, and ap=0.4. The time-dependent
equilibrium distribution in phase is characterized by s, = —2i/# and 5,=0. Plots are (a) Im @ vs k for 0<£<10 and (b) Re & vs k for 0<k=<1.5. Also
shown for unstable eigenmodes are (c) the Poynting flux ratio in Eq. (85) vs £ and (d) 2~ E, _(£,@)/E (k0 1)] vs £.

the growth rates at k=£, in Fig. 6(a) are not large, being
slightly less than the maximum growth rates that appear in
Fig. 4(a) for the case of a uniform distribution.

Although the growth-rate peak ABC is very narrow,
eigenmodes at points near its maximum are the fastest grow-
ing modes of this system. Moreover, reference to Fig. 6(c)
shows that these modes contain a relatively strong backward-
traveling, LHP component.

Example 4: As our final numerical example, we treat the
limit of a=0 for the distribution in Fig. 3(d). In the limit, the
distribution becomes ®(&)=37_8(£-2n7) with 5,=35,
=1. In this case, ¢=w,t for all particles in the equilibrium
beam. Growth-rate curves for the interval 0=<<£<8 and plots
of Re @ vs £ for the interval 0<<£<1.5 appear in Figs. 7(a)
and 7(b), respectively. For unstable eigenmodes, plots of the
Poynting flux ratio in Eq. (85) vs £ and 2™ "2|E, _(k,@)/
E, (k,w=1)| vs k are presented in Figs. 7(c) and 7(d), re-
spectively. Letters on these graphs show corresponding
points. Eigenmodes belonging to growth-rate curve segments

ABC and DE have backward-traveling LHP componéf‘x{ts"

and forward-traveling RHP and electrostatic components.' A
tiny growth-rate peak appears at G in Fig. 7(a). Reference to
Fig. 7(b) shows that its LHP and electrostatic components
are backward traveling. Eigenmodes on all other segments
contain only forward-traveling components.

A striking feature of the growth-rate curves in Fig. 7(a)
is that no growth occurs for values of k greater than approxi-
mately 6.2. That is, no branches of the dispersion relation
show growth in the limit of large k. [Suppression of instabil-
ity in the whistler by the electrostatic wave is discussed in
Ref. 10.] Also, notice the interval of no growth FH (l.
<k=2). '

Another striking feature is the great height of the growth
peak ABC. From Fig. 7(c), we see that the Poynting flux of
the backward-traveling LHP electromagnetic wave exceeds
that of the forward-traveling RHP electromagnetic wave over
most of the interval of this growth peak. The amplitude of
the forward-traveling electrostatic wave is seen [from Figs.
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7(c) and 7(d)] to be of the same order of magnitude as the

. amplitudes of the electromagnetic waves.

Again, we see growth of RHP electromagnetic waves at
the resonance wave number £=£,=4.94. In fact, the maxi-
mum of the growth-rate curve HIJ in Fig. 7(a) is situated
very close to the resonance wave number, and the growth
rate at this maximum exceeds any growth rate for the gyro-
tropic case in Fig. 4(a). From Figs. 7(c) and 7(d), it is seen
that the Jargest component for eigenmodes near this maxi-
mum is that corresponding to forward-traveling RHP electro-
magnetic radiation.

To summarize, it is evident that a richness of structure in
the growth-rate curves can be produced by introducing non-
uniform distributions @ (£). Using proper choices of ®(¢£),
temporal growth rates near k=£, can be significantly in-

creased and growth rates at large £ can be on the one hand
enhanced or on the other hand completely suppressed. Two-
stream equilibrium distributions such as that in example 2
seem to be most effective in enhancing growth rates at the

resonance k=£,. Gaps of no growth can be introduced at
moderate values of k. At small values of £ where eigen-
modes may contain backward-traveling components, growth
rates and the properties of eigenmodes can be greatly
changed by changing ®(£). [This latter fact suggests, but
does not prove, that absolute instability properties may de-
pend strongly on ®(£). However, no pinch-point analyses of
these systems have been carried out.>!~3*]

V. DISPERSION CHARACTERISTICS FOR THE
AXIAL-DEPENDENT EQUILIBRIUM DISTRIBUTION
WITHOUT AXIAL MOMENTUM SPREAD

A. Analysis

Finally, we consider the axial-dependent equilibrium
distribution  fo(py .P:,{)=folpy .., ¢—mQ.zlp,) for
which the perturbed field components are related by the in-
tegral equations (41)-(43). Even if the equilibrium distribu-
tion is not uniformly random in ¢, Eqs. (41)-(43) will re-
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duce to algebraic equations if there is no spread in p, in the
equilibrium distribution. (A spread in energy is permitted if
it is due only to a spread in p, .) The most general equilib-
rium distribution having this property is
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. 1 2w )
ha(pyoP:0)= ﬁfo dlfolpy .p.o.0)exp(—inf).
(88)

Three homogeneous equations relating just three field com-

folpropz: )= 8(pe=Pe0)fo(PLoPr0.)- (86) ponents are found using a procedure similar to that used in
It follows from Eq. (40) that obtaining Eq. (58). In matrix form the equations are

hn(P.L va)z 5(pz—p:0)ﬁn(pl vp:O)f (87) D,E":O’ (89)
where where

]
D _(k,w,Q,p) = 7-+(k,0,Qc.,p20) = 7-(k, 0,0 ,p o)
pr=| = 7e-(k+2mQ/po, 0.0 pr0) Dii(k+2mQ/pg.0,Q0P0) N+:(k+2mQ /Ipo,0,Q.,p,0)
“ﬁ:—(k+’"0c/on»“’vchon) ~;71+(k+ ch/P:O'w»Qusz) D:,z(k+ m‘Qc/Pzvava)

and
E,_(k,w)
E\ (k+2mQ./p,p.w)
E(k+ mQ./py,w)

E'= (o1)

The qﬁamities ﬁij in Eq. (90) are obtained from the corre-
sponding quantities in Egs. (47)-(52) by replacing
h,(p..p,) Wwith A(p,.p.), p, with p,, and 7y with
¥(p. »P,0)- The remaining quantities in Eq. (90) can be ob-
tained from Egs. (44)—(46). They are

DA,——(kvw'Q’c vao)

V27

™ P
=w2—czk2——-2—Q‘; L

dp, ho(py pro)——
o FPLlolPL p’°)7(pl,pzo)

_ kp:O
Y(py vao)m

ksz )(
Ww— — w
¥(pL Po)m
Q. )“ i
¥(PL.P20) Ypy .pro)mic

X( _ . szO _ Qc )_2 92
@ ¥(py-Po)m  ¥(PL.P:o) ’ ®2)

D‘;+(k'w"0c vsz)=Df-—(k-wv—Qc 'p:O)'

- (&)2'—(,‘2’(2)

(93)

Déz(kvvazo)

=1- VZWQ,ZJJ; dP.LPJ.ﬁo(PJ. P0)Y "(p, 2P 20)

P kp o :
X 1 - —_,_'—'? w— - .
¥(pL.p.g)mc ¥(py.p:0)m
(94)

(50)

—

Once the assumption is made that equilibrium self-fields can
be neglected, the exact dispersion relation for the case of .
definite p,=p,g is

detD’(k,w)=0. .(95)

For a given frequency w, the wave number of the right-hand
polarized wave E;_ is k. The wave numbers of the fields
E,; and E|, are k+2mQ /p,o and k+mQ /p,,, respec-
tively. Although no assumption of a steady state has been
made in the derivation of Eqs. (89)-(95), these results are
the same as those obtained in Egs. (60)~(62) of the steady-
state analysis of Ref. 9. '
Finally, we emphasize that the eigenmode E in Eq. (60)
is of a different nature than the eigenmode E’ in Eq. (92).
The eigenmode E is a composite of three components which
refer to waves of the same propagation vector but of different
frequencies. These frequencies differ by fixed real values.,On
the other hand, the eigenmode E’ is a composite of thiree
modes which refer to waves of the same frequency but of
different propagation vectors. These propagation vectors dif-

fer by fixed real values. In either case, if £ is restricted to real
values, then temporal growth or decay rates are given by
Im @ for all components. If @ is restricted to ‘real values,
then spatial growth or decay rates are given by Im £ for all
components.

B. Case of definite p, and p,

As in Sec. III, we present numerical examples for cases
in which both p,=p,, and p, =p, o have definite values in
the equilibrium distribution. Consequently, the factor

Folpy Pr0.0)in Eq. (86) is selected to'be of the form

(PL=P1o)

. o
folpL.p0. D)= ¥({), (96)
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where ¥ ({) is a periodic function of { (or ¢) of period 27.
From Egq. (5), the normalization condition on ¥ ({) is

2 Qc 3 2w B
fo qu‘-I’(d).‘mp Z)—jo di¥ (=1 97)

<

It follows from Eq. (88) that

i )= 1 5(P1’P¢o)w
aA\PLP20 \/ﬁ PL no

(98)

D=
P‘EN l 'veu

M__(k,@)M', , (k,o)M,(ko)= 5

2

Dimensionless frequencies, wave numbers, and velocity
components are defined as in Sec. IIl B, and

2 2
M;+(£,c5)=[&>2—-(12+;3—) ](&)—Eﬂz—l)z
2

(DP R "
- =5(6= kB~ 2) (o~ kB~ 1)

1w, | [, 2\?
oo} o

The quantities M __(k,®) and M,,(k,®) are defined in Egs.

(70) and (72), respectively.
Like Eq. (69), Eq. (100) is valid for complex w and
complex £. It is invariant under the transformation

. 2 ..
k—»—IE*—B—, 0—— 0%, (102)

z

In analogy with Eq. (74), it follows from the matrix equation
(90) that, if either w;#0 or w,#0, then under the transfor-
mation in Eq. (102)

El+(—ﬁ*l_‘:)*)‘
E,_(—k*-2/8,,— 0*)

E . (k+2B,,0)
El—(kv(:))

E¥_(k,0)

T EnL(E2B,0) (1039

) Moreover, in analogy with Eq. (75), if w,#0, then under the

transformation in Eq. (102)

2
) /sitwm{ (Bo—B)M', (&) +
— m:[ 52 k(/z+ Bz)

} 2
) ,Bi(wzwz_l-i-w_zwf)[ &,z—k(£+ -ﬁ—)
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where

27
w"=fo d{¥({)exp(—in{). (99)

Notice that wo=1 and that w_,=w}.

With the aid of Egs. (92)-(94) and Egs. (46)—(52), we
obtain the dispersion relation in Eq. (95) for the case of
definite p, and p,. The dispersion relation is

)
o—| k+—
B,
2

M, (k)

9
-

B:

M--(E,é)}

2
k+ —)
B.

[Bz‘;’— (B.o—k).  (100)

.

E,+(k+2B,,0) Ey(—k*,~0*)
E|(k+1B,,0) E(—k*-1B,,—o*)
_ Ef_(kw)
CER(R+1B,,0)
(104
E,_(k,w) E,_(-k*-28,,— o*%) (104
Elz(k'*'llﬂz":’) Elz(—'k*_llﬁv'"‘:’*)
_E} (k+2/8;,0)
T EN(k+1B,,0)

The ratio of the time averaged Poynting vectors associated

with the individual E, ,(k+2/B;,®) and E,_(k,®) fields is -

S+ (k+2/B,,0)|
s_(ka) |

k+21p,|
£

Ey.(k+2/B,.0)|’
El—(k:‘:’) l .
(105)
Like the dispersion relation in Eq. (69) of Sec. IIl B, Eq.
(100) is a tenth-degree polynomial equation in either £ or ®.
The large || behavior of w(k)/k given by Eq. (100) is the
same as that given by Eq. (69), including two branches with
o(k)/k=1, two branches with @(k)/k—=1, and six
branches with o(k)/k=£kp,.
If either w; or w;, vanishes, approximations for w( k)

valid for large values of £ are readily determined and are
found to be very similar to those found in the previous sec-
tion for the case of the time-dependent equilibrium. If w,
=0 and w,#0, then the transverse electromagnetic compo-
nents are coupled to each other and the electrostatic compo-

nent is uncoupled. The large |k| behaviors of the ten
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branches of the dispersion relation in Eq. (100) are similar to
those given in Egs. (76)-(80) for the corresponding case
(s;=0,5,#0) of the dispersion relation in Eq. (69). Four of
the branches now obey Egs. (76) and (79). Four branches
obey Egs. (77) and (78) with s, replaced by w,, that is

Sl i wp 12
w=kB:+117_2- 'M‘B.L(l‘*'lwzl) ) (106)
w=kp +1+Lfﬂl3 (1=]wa)"? (107)
—rP: - L 2 .
\5 we

Finally, Eq. (82) is no longer valid and is replaced by
2112

w
= (108)
wc

(k+28,)%+

w==*

for the two remaining branches. Growth-rate curves for
lw,]<1 will show two unstable branches of the dispersion

relation in Eq. (100) for large values of real k.

If w,#0 and w,=0, then the transverse electromagnetic
components of an eigenmode are coupled through the longi-
tudinal electrostatic component. The large | k| behavior of the
dispersion relation in Eq. (100) is similar to that of the dis-
persion relation in Eq. (69) for the analogous case of 5,70
and s,=0. Four of the branches obey Eqgs. (79) and (81).
Four additional branches obey Egs. (82) and (83) with the
quantity s, in Eq. (84) replaced with w, that is

| w

é=§ﬂz+1t$—w—pxﬁ,, (109)
v=kpB.+1 L 9p (110)
w=kB.+1Ex—="K

: \/:’.:"-’c -

where
2 2 2
K;=[I(%—(l—ﬁf))+ (’—}—(1—/33))
. 1 112y 1/2
+4,Bi(1—[33)(-2——|w1|2)l } . (111)

The remaining two branches obey Eq. (106). At large real k,
growth-rate curves will show two unstable branches of the
dispersion relation in Eq. (100) if lwy| <142

Finally, if neither w; nor w; vanish, then the large 1]
behaviors of four of the branches of the dispersion relation in
Eg. (100) are given by Egs. (79) and (106). The behaviors of
the remaining six branches are obtained by solving a cubic
equation in (&-kB,—1)*. We do not include an analysis of
the equation in this paper.

C. Numerical examples

Before the numerical examples are presented, one final
point of clarification must be made. Throughout this paper,
we have followed the usual terminology and referred to
E, _(k,@) and E| ,(k,@) as components representing RHP-
and LHP-electromagnetic waves, respectively. However, this
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—1254<k=<10 and (b) Re & vs k for ~1.254<k=0.

nomenclature is proper only if Re £>0.1f Re k<0, theﬁ;th"e
roles played by these components are reversed and
E,_(E,&)) and EH(IE,&)) represent LHP and RHP electro-
magnetic waves, respectively. If (in addition) Re ®>0, then
both waves are backward traveling. Moreover, if Re ©<0,
then both waves are forward traveling. '

As in Sec. I1I, the following numerical computations are

limited to the case of real k. Then, from Eq. (102), Eq. (100)

is invariant under the transformation @— —o* and k——k
—2/B. . This transformation is equivalent to inverting a plot
of Rew vs k (real) through the point (k,Re @)
=(-1/B.,0) and reflecting a plot of Im(@) vs k (real)
through the vertical line k= —1/B,. Because of Egs. (103)
and (104), no new information is obtained from the trans-
formed eigenvectors. Consequently, the region k<~ 1/B, is

omitted from the following plots.
Parameter values used below are the same as tho se used

in previous numerical examples (i.e., w;/w3=0.05, Y=2,
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and ag=0.4). Functional forms considered for ¥({) are
chosen as W(£)=d(¢), where D(£) is defined in Figs.
3(a)-3(d). Moreover each of the examples below is the ana-
log (for the axial-dependent distribution) of the example of
the same number in Sec. III C (for the time-dependent dis-
tribution). .

Example I: For w;=w,=0, which can be obtained from
the uniform W({) corresponding to Fig. 3(a), the dispersion
relation in Eq. (100) reduces to the three independent disper-
sion relations M__(k,0)=0, M, (k,®)=0, and
M ::(E,J))=O for uncoupled right- and left-circularly polar-
ized- transverse waves and the longitudinal electrostatic
wave, respectively. For a given frequency, the respective
wave numbers for these waves are k, k+2/8,, and £
+1/B,. Growth-rate curves are shown in Fig. 8(a) for
~1/B,=—1.254<k=<10. Plots of Re & vs £ for — 1/8,<k
=<0 are presented in Fig. 8(b). Letters show corresponding
points in Figs. 8(a) and 8(b). :

In Fig. 8(a), the growth-rate curve segments GH and HI
are obtained from roots of M, ,(k,®), so that the corre-
sponding eigenmodes have a single nonvanishing component
E,,(k+2/B,,0). Referring to Fig. 8(b), we see that Re @
>0 and k+2/8,>0 on both segments. Consequently, both
segments represent unstable electromagnetic waves that are
LHP and forward traveling. All other growth-rate curve seg-
ments in Fig. 8(a) are obtained from roots of M__(k,®)
=0, so that the comresponding eigenmodes have a single
nonvanishing component E,_(IE,E_)). For all points of the
short growth-rate curve segment AB, reference to Fig. 8(b)
shows that £<0 and Re ©@<0. Consequently, growth-rate
curve segment AB- pertains to unstable, forward-traveling
LHP electromagnetic waves. Similarly, k<0 and Re >0
for eigenmodes on growth-rate curve segments BC and DE,
so that these segments represent unstable backward-
traveling, LHP electromagnetic waves. The remaining
growth-rate curve segments (EF and JK) pertain to unstable
forward-traveling, RHP electromagnetic waves. As expected,

~ there is no growth of the RHP electromagnetic wave at the

resonance wave number k,=1/(1—8,)=4.94. The eigen-
modes obtained from roots of M, +(/E,c3) are of course com-
pletely decoupled from the eigenmodes obtained from roots
of M__(k,0)=0. Nevertheless, Fig. 8(a) represents the
limit approached by any system with our parameters as both
w) and w, approach zero.

This example is analogous to example 1 shown in Figs.
4(a) and 4(b) in Sec. ITI C. Comparing Figs. 4(a) and 8(a),
we see that they differ in two respects. First, the growth-rate
curve in Fig. 8(a) obtained from M’, , (£,)=0 has the same
form as the growth-rate curve in Fig. 4(a) obtained from
M, (k,@)=0 but is displaced to the left by 2/8,=2.508.
Second, no information is lost in Figs. 4(a) and 4(b) by ig-
noring the negative k-axis. However, only k< — 1/, can be
ignored in Figs. 8(a) and 8(b) without losing information.

Example 2: For w;=0 and w,=22/1r, which can be
obtained if ¥({) corresponds to Fig. 3(b) with a= /4, the
equilibrium beam consists of two streams, each with a water-
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bag distribution in ¢ of width /4. One distribution is cen-
tered at ¢=m{ z/p,o and the other at p=mQ z/p o+ .
As z varies, each center rotates about the direction of the
applied field lines with a characteristic wavelength of
2mpo/mQ,.=27v,0/0,.

Growth-rate curves (for — 1.25<k< 16) and correspond- -

ing plots of Re @ vs k (for — 1.25<k<0) are presented in
Figs. 9(a) and 9(b). Plots of the Poynting ratio in Eq. (105)
vs k (for — 1.25<k=<16) appear in Fig. 9(c). Letters show
comresponding points on these plots. The letters have also
been chosen to correlate with letters on the corresponding
plots for example 2 of Sec. III C in Figs. 5(a)-5(c), which is
analogous to the present example. Superficially the plots in
Figs. 9(a)-9(c) are very similar to the corresponding plots in
Figs. 5(a)-5(c). However, it is emphasized that the eigen-
modes are very different in the two cases. The eigenmodes
for Fig. 5 consist of the nonvanishing components E; _(k, )
and E, . (k,w—2), whereas the eigenmodes for Fig. 9 con-
sist of the nonvanishing components E,_(k,») and E,(k
+2/8,,0).

By comparing Figs. 9(a) and 9(b), it is easily seen
that the eigenmodes belonging to the growth-rate curve
segments BA, CD, and FE consist of LHP, forward-
traveling electromagnetic waves [from E,,(k+2/8,,®)]
and LHP, backward-traveling electromagnetic waves [from
E,_(k,)]. (The corresponding modes in Fig. 5 consist of
RHP, forward-traveling and LHP, backward-traveling elec-
tromagnetic waves.) From Fig. 9(c), we see that the back-
ward Poynting flux is relatively strong for most gigenmodes
on CA and that it varies rapidly with k for eigenmodes on
CD and FE. The infinity in the Poynting flux ratio at the
cutoff at k=0 is due to the factor [(k+2,)/£] in Eq. (105).
All of the remaining growth-rate curve segments in Fig. 9(a)
pertain to eigenmodes consisting of a forward-traveling RHP
and a forward-traveling LHP component. Notice that the
branch CDH of the dispersion relation shows a growth rate
at the resonance k,=4.94 which is significantly greater than
any growth rate for the uncoupled system in Fig. 8(a). Ref-
erence to Fig. 9(c) shows that the Poynting flux of RHP
electromagnetic radiation is dominant in the corresponding
eigenmode. (This behavior is similar to that found at £=£,
for example 2 in Sec. IIl C.) Figures 5(a) and 9(a) are very
similar at large values of £ in conformity with previous ana-
lytic results pertaining to the large £ behaviors of Eq. (69)
when 5,=0 and Eq. (100) when w,=0.

Example 3: The analog of example 3 of Sec. III [whose
stability properties are summarized in Figs. 6(a)-6(d)] is ob-
tained by setting w;=—2i/7 and w,=0 in Egq. (98).
Growth-rate curves for —1.25<k=<10 are presented in Fig.
10(a). Details of the growth-rate curves in the negative &
interval (—1.25s12s0) are shown in Fig. 10(b). Corre-
sponding plots of Re @ vs k (for — 1.25<k<0) are pre-
sented in Fig. 11(a). Plots of the Poynting ratio in Eq. (105)
vs k appear in Fig. 11(b). The component E,.(k+1/83,,)
will not necessarily vanish for unstable eigenmodes of this
system. Consequently, plots of E|_(k,w)/E .(k+ l/B:,a‘))
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“ e
vs k for unstable modes are presented in Fig. 11(c). Letters
show corresponding points in Figs. 10 and 11.

A detailed comparison of Figs. 10 and 11(a) gives the
following description of the unstable eigenmodes. The com-
ponents of an eigenmode pertaining to the short growth-rate
curve segment DR are two forward-traveling LHP electro-
magnetic waves [from E, _(k,®) and E, . (k+2/B,,®)] and
a backward-traveling electrostatic wave [from E,(k
+1/8, ,©)]. The components pertaining to the growth-rate
curve segments REF, ABCG, and MN are a backward-
traveling LHP electromagnetic wave [from E,_(k,@)], a
forward-traveling LHP electromagnetic wave [from E 1+ (K
+2/8, ,)], and a forward traveling electrostatic wave [ from
E,.(k+1/3,,)]. All other growth-rate curve segrnents
have eigenmodes consisting of forward traveling LHP and
RHP electromagnetic waves and a forward traveling electro-
static wave.
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The most rapidly growing eigenmode of this system is
that at point C in Figs. 10(a) and 10(b). The components of
this eigenmode are a backward-traveling LHP wave, a
forward-traveling LHP wave, and a forward-traveling elec-
trostatic wave. Reference to Figs. 11(b) and 11(c) shows that
the backward-traveling component [which arises from
E,_(k,®)] is the largest component both in amplitude and

energy transfer. A similar situation was found for small |£] in
Fig. 6(a) for the axial-dependent case except that the
forward-traveling electromagnetic component was found to
be RHP. -

Two branches of the growth-rate curves in Figs. 10(a)
and 10(b) (MNO and ABCGHI) show moderate growth
rates at the resonance wave number E,=4.94. For both of
these branches, Figs. 11(b) and 11(c) show that the eigen-
mode at IE,= 4.94 has a relatively large RHP electromagnetic
component. Again we see that this behavior differs from that
of the uncoupled system in Fig. 8(a), which shows no growth
of RHP electromagnetic waves at the resonance wave num-
ber. The growth rates at £, are approximately the same in
Fig. 6(a) for the time-dependent equilibrium and Fig. 10(a)
for the axial-dependent equilibrium; however, the electro-

* static components of the corresponding eigenvectors are of

greater relative amplitude in the axial-dependent case than in .
the time-dependent case. [Compare Fig. 11(c) with Fig.
6(d).] _ '

Finally, at large values of k, Figs. 10(a) and 6(a) ap-
proximate each other closely. This fact conforms with-our
previous results giving the large-|£| behaviors of Eq. (69) for
s,=0 and Eq. (100) for w,=0. However, the corresponding
eigenmodes [E in Eq. (60) and E’ in Eq. (91)] are different
even in the limit of large £. By comparing Fig. 6(d) with Fig.
11(c), it is seen that (at large £) the electrostatic component
is relatively much stronger in the case of the axial-dependent
equilibrium distribution.

Example 4: To obtain the analog of example 4 of Sec.

III C (whose stability properties are summarized in Fig. 7),

choose w;=w,=1. These values are obtained by choosing
W(L)=3%_6({—2n), so that in effect the phase of ajy
particle is given by ¢=mQ z/p,. Growth-rate curves (for
—1.254<k=<8) and corresponding plots of Re & vs £ (for
—1.254<k<0) are presented in Figs. 12(a) and 12(b), re-
spectively. For unstable branches of the dispersion relation in
Eq. (100), plots of the Poynting flux ratio in Eq."(105) vs £
and E,_(k,®)/E (k+ I/Bz,d;) vs k are presented in Figs.
12(c) and 12(d), respectively. Letters show corresponding
points in these plots. The letters correspond only loosely to
those in Fig. 7. _

Comparing Figs. 12(a) and 12(b), we see that the com-
ponents of an eigenmode on growth-rate curve segment DN
are a backward-traveling LHP electromagnetic wave
[E,+(k+2/B,,w)), a forward-traveling LHP electromag-
netic wave [E ,_(IG,J))], and a backward-traveling electro-
static wave [E,.(k+ 1/8,,®)]. Eigenmodes on ‘growth-rate
curve segments ACB and NEF consist of a backward-
traveling LHP electromagnetic wave [E, _(£, )], a forward-
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FIG. 12. Dispersion relations and properties of corresponding eigenvectors for system parameters wf/w:',=0.05. Yo=2, and ap=0.4. The zuial-ciependent
equilibrium distribution in phase is characterized by w; =w;= 1. Plots are (2) Im & vs K for — 1.254<£=<8 and (b) Re @ vs £ for — 1.254<£=<0. Also shown
for unstable eigenmodes are (c) the Poynting flux ratio in Eq. (105) vs £ and (d) 2'm|El_(£,5))/E|:()E+ /B8, ,@)| vs £.

traveling LHP electromagnetic wave [E ;. (k+2/8,,0)],
and a forward-traveling electrostatic wave [E IZ(E
+ ll,Bz,c:))]. Eigenmodes on all other growth-rate curve seg-
ments consist of forward traveling RHP and LHP electro-
magnetic waves and a forward-traveling electrostatic wave.

Some properties of the growth-rate curves in Fig. 12(a)
are similar to those in Fig. 7(a). Like Fig. 7(a), Fig. 12(a)
shows no growth at large values of k. Both sets of curves
show very large growth rates at small values of |£], where

backward waves occur [i.e., near point B in Fig. 7(a) and.

point C in Fig. 12(a)]. The eigenmode at point C in Fig.
12(a) consists of a backward-traveling LHP electromagnetic
wave [from E 1_(12,5))], and forward-traveling LHP electro-
magnetic and electrostatic modes. Reference to Figs. 12(c)
and 12(d) shows that the backward-traveling component ex-
ceeds the other two components in amplitude. In Sec. III C, a
similar situation was found to exist at point B in Fig. 7(a),
except that the forward-traveling electromagnetic component
is RHP. Like Fig. 7(a), Fig. 12(a) shows a fairly large growth

rate at the resonance wave number on the branch ACBIJ.
Moreover, Figs. 12(c) and 12(d) show that the correspording
eigenmode has a relatively strong RHP electromagnetic com-
ponent.

Finally, notice that no gap appears in the growth-rate
curves in Fig. 12(a) to correspond to the gap between points
F and H in Fig. 7(a). _ .

D. Remarks concerning numerical examples

The analysis of the above numerical examples for the
axial-dependent equilibrium leads to the same general con-
clusions as those given in Sec. III C for the time-dependent
equilibrium. A rich structure of different growth-rate curves
and unstable eigenmodes can be induced by varying the form
of W({), i.e., the values of w, and w,. A suitable choice of
W ({) can significantly increase growth rates of RHP electro-
magnetic waves at the resonance wave number k= 1/(1
- ;) and can significantly increase or reduce growth rates at

large values of k. At small values of k, where backward-
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traveling components are present, growth rates and the struc-
tures of eigenmodes depend strongly on the form of ¥ (¢).
This fact suggests that properties of absolute instabilities
may depend strongly on ¥({). However, a study of this
conjecture has not been carried out.

For the same parameters ({.,7;,aq), growth rate
curves for corresponding (s;=w),, s,=w,) time-dependent
and axial-dependent systems usually show some resem-
blance. Nevertheless, the eigenmode structures are very dif-
ferent in the two cases. In the time-dependent case, unstable
eigenmodes for coupled systems consist of two or three com-
ponents of the same wave numbers and different frequencies,
whereas in the axial-dependent case the components have the
same frequencies and different wave numbers. Moreover, for

small values of £, the handedness and directions of motion of
components may differ between the two cases.

V. CONCLUSIONS

We have studied stability properties of a relativistic elec-
tron beam propagating along an applied magnetic field Boéz,
using the Maxwell-Vlasov equations under the constraint
that spatially dependent quantities are functions of z only. Of
particular interest are those cases in which the equili-
brium distribution is not uniformly random in the electron
gyrophase angle ¢. Two equilibrium distributions have been
considered. These are the time-dependent distribution
fo(py.p:.6), where §=¢—Q.t/y, and the spatial-
dependent distribution fo(p, ,p,,{), where {=¢—m z/
P - Since neither of these distributions can be converted into
the other by a Lorentz transformation, the distributions rep-
resent two physically different systems. It is found that in
general the Fourier components of the perturbed electric and
magnetic fields are related by the integral equations (26)—
(28) for the case of the time-dependent equilibrium distribu-
tion, and by the integral equations (41)~(43) for the case of
the spatial-dependent equilibrium distribution. In our nu-
merical analysis, however, we consider special cases in
which the integral equations reduce to algebraic equations
even though the equilibrium distribution is not uniformly
random in phase.

If there is no spread in electron energies (or equivalently
p) in the time-dependent equilibrium distribution, then the
integral equations (26)—(28) reduce to just three algebraic
equations [Eq. (58)] relating the Fourier components
E,_(k,0), E\y(k,0-20,.), and E,,(k,w0— w_) of the per-
turbed fields. Consequently, an eigenmode of the system
consists of a RHP electromagnetic wave, a LHP electromag-

netic wave, and an electrostatic wave. These components -

have the same wave number, and the same spatial and tem-
poral growth or decay rates, but have different frequencies.
[The electrostatic component is decoupled if the Fourier co-
efficient <é,(po,az) in Eq. (57) vanishes, and all three com-
ponents decouple if g( Po.@) also vanishes.]

If there is no spread in the axial component of momen-
tum (p,) in the spatial-dependent equilibrium distribution,
then the integral equations (41)—(43) reduce to just three
algebraic equations [Eq. (89)] relating the perturbed field
Fourier components E; _(k,w), E| 1 (k+2mQ_/p 4, ), and
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E .(k+mQ./p,y,w). Therefore the components of an
eigenmode are 2 RHP electromagnetic wave, a LHP electro-
magnetic wave, and an electrostatic wave. These components
have the same frequency, and the same spatial and temporal
growth or decay rates, but have different wave numbers. {In
analogy with the time-dependent case, the electrostatic com-

ponent is decoupled if the Fourier coefficient £;(p, ,p.o) in
Eq. (88) vanishes, and all of the components decouple if

h(p, ,p.o) also vanishes.]

Numerical computations of stability properties have
been carried out for both the time- and spatial-dependent
equilibrium distributions for the case where no spread is
present in both p and the pitch angle & (or equivalently in
both p, and p,). In this case the frequencies and wave num-
bers can be normalized to the relativistic cyclotron frequency
w, by defining @=w/w, and k=ck/w,. The computations
are restricted to real values of £, so that Im >0 indicates
temporal growth. It is found that (for fixed applied magnetic
field, energy, and pitch angle) a rich variety of growth-rate
curves and eigenmodes can be obtained by changing the de-
pendence of the equilibrium distribution on the phase angle.
Appropriate choices of the phase-angle dependence can sig-
nificantly increase growth rates near the resonance wave
number k,= 1/(1 — B,). Growth rates at large values of £ can.
on the one hand be enhanced and on the other hand be sup-

pressed altogether. Moreover, finite intervals (in E) of no
growth can be produced. Finally, growth rate curves and the

form of eigenvectors at small values of |£|, where backward
traveling components are present, are particularly sensitive
to the ¢-dependence of the equilibrium distribution.

Based on the results obtained in this paper, we conclude
that coherently gyrating electron beams can interact with
electromagnetic and electrostatic waves in a rich manner,
even in one-dimensional configurations. Such interactions
are important if they occur in an extended space or time.
Therefore it is critical to take into account these interactions
in the design of coherent radiation devices based on coher-
ently gyrating electron beams. \

As an important area in our current research, we -are
analyzing the integral equations to determine the structures
of eigenmodes in the general case. We also point out that the
results of this work are readily extended by Lorentz transfor-
mations to frames of reference in which the distributions in
phase vary both spatially and temporally. (See the Appen-
dix.) Consequently, another area of current research is the
extension of our analysis to spatiotemporal distributions.?!~2*
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APPENDIX: RELATIONS BETWEEN EQUILIBRIUM
DISTRIBUTIONS

In this paper, we consider equilibrium distributions
whose form in the laboratory reference frame is either
fo(p.t)=folpL.p:, &) or folz.p)=fo(py .pP;.{). Also, in
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this appendix, we define f, to be ng times the equilibrium
distribution used throughout the rest of this paper. Below it is
shown that, under a Lorentz transformation to a new refer-
ence frame moving in the z-direction relative to the labora-
tory frame with velocity B,=u/c, either of these forms is
transformed into combinations of the two original forms.

It is well known that a distribution fo(z,p,?) is invariant
under a Lorentz transformation. Consequently, under the
Lorentz transformations described above the distribution be-
comes

folz'.p't")=folz,p.1), (A1)
where
z=v,(¢" +B,ct’),

ct=y,(ct'+8,2"),
’ ' A2
p:=7u(pz+ﬂuy mC), ( )

yme=y,(y'mc+B.p,).

Moreover, p, =p| , $=¢’, and y,=(1—- 82"~
Expressing £={2.t/7y in terms of transformed (primed)
quantities, we find that

E=(1+B.8,)"'¢ +ﬁzﬂu(l+ﬁuﬁz)_l

= ')’"(1 _,Buﬂz)gl + 7uBu(Bz—Bu)§” (A3)
where B,=v,/c, and

Q.

§=¢-—1, (A4)
Y
Q.7 mil,

U=¢-——=¢-— . (43)
AR P,

Consequently, if the laboratory frame distribution is of the
form fo(p,t) = fo(py .p.,£), then the moving frame distribu-
tion will be of the form fo(z',p’.t')=fo(p, WDy €
+cpl"), where ¢ =(1+B,8,)"' and c,=B.B,(1
+B.B;)"". Notice that ¢, +c,=1 and that ¢,>0, so that a
Lorentz transformation cannot change the form of a distribu-
tion from fo(p, ,p,,€) into fo(p, .p,,{") for any value of
p’. Finally, notice that Eq. (55) must be applied with care to
the singular case of B,=p, (i.e., B, =0), because {'— as
B,—0. In this singular case, £=¢’ =B .z'/y'c where
_(Pl/m2C2+l)1p

Expressing {=¢—mQ. z/yp,=¢—Q.2/yv, in terms

of primed quantities, we obtain

B, B,
S et
2 2
_YBu VPP
- ﬁz (1 ﬁan)g +ﬁz(ﬁz ﬂu){ (AG)

J. A. Davies and C. Chen 3439

Under a Lorentz transformation, a distribution of the form
folz.p)=folp..p.,{) atiains the form fo(z',p'.t")
=folpy.p; 1§ +cal’), where now ¢,=pB,/(B,+B!)
and c,=B./(B,+B.). Again, notice that ¢, +c,=1. In the
singular case of 8,— B, (i.e., B,—0), Eq. (A6) reduces to
{=¢ - (QJv") (Z'1v,). Consequently, a Lorentz transfor-
mation cannot change the form of a distribution from
folpy .p.,0) into fo(p, .pi,&") for any value of p’.

Finally, we remark that if the laboratory frame is taken
to be the primed frame, then distributions of definite £ in Eq.
(A3) or definite { in Eq. (A6) are referred to as spatiotem-
poral distributions in the literature 2!~
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A Dielectric Omnidirectional

Reflector

Yoel Fink, Joshua N. Winn, Shanhui Fan, Chiping Chen,
Jurgen Michel, John D. Joannopoulos, Edwin L. Thomas*

A design criterion that permits truly omnidirectional reflectivity for all potar-
izations of incident light over a wide selectable range of frequencies was used
in fabricating an all-dielectric omnidirectional reflector consisting of multilayer
films. The reflector was simply constructed as a stack of nine alternating
micrometer-thick layers of polystyrené and tellurium and demonstrates om-
nidirectional reflection over the wavelength range from 10 to 15 micrometers.
Because the omnidirectionality criterion is general, it can be used to design
omnidirectional reflectors in many frequency ranges of interest. Potential uses
depend on the geometry of the system. For example, coating of an enclosure
will result in an optical cavity. A hollow tube will produce a low-loss, broadband
waveguide, whereas a planar film could be used as an efficient radiative heat
barrier or collector in thermoelectric devices.

Mirrors, probably the most prevalent of
optical devices, are used for imaging and
solar energy collection and in laser cavities.
One can distinguish between two types of
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mirrors, the age-old metallic and the more
recent dielectric. Metallic mirrors reflect
light over a broad range of frequencies
incident from arbitrary angles (that is, om-
nidirectional reflectance). However, at in-
frared and optical frequencies, a few per-
cent of the incident power is typically lost
because of absorption. Multilayer dielectric
mirrors are used primarily to reflect a nar-
row range of frequencies incident from a
particular angle or particular angular range.
Unlike their metallic counterparts, dielec-
tric reflectors can be extremely low loss.
The ability to reflect light of arbitrary angle
of incidence for all-dielectric structures has
been associated with the existence of a
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complete photonic band gap (/-3). which
can exist only in a system with a dielectric
function that is periodic along three orthog-
onal directions. In fact, a recent theoretical
analysis predicted that a sufficient condi-
tion for the achievement of omnidirectional
reflection in a periodic system with an in-
terface is the existence of an overlapping

Fig. 1. Schematic of the multi-

band gap regime in phase space above the
light cone of the ambient media (4). Now
we extend the theoretical analysis and pro-
vide experimental realization of a multi-
layer omnidirectional reflector operable in
infrared frequencies. The structure is made
of thin layers of materials with different
dielectric constants (polystyrene and tellu-

layer system showing the layer
parameters {n, and h_ are the
index of refraction and thickness
of layer a, respectively), the in-
cident wave vector k, and the
electromagnetic mode conven-
tion. E and B are the electric and
magnetic fields, respectively.
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Fig. 2. (A) Projected band structure of a multilayer film with the light line and Brewster line,
exhibiting a reflectivity range of limited angular acceptance withn, = 1,n, = 22 andn, = 1.7
and a thickness ratio of h,/h, = 2.2/1.7. (B) Projected band structure of a multilayer film together
with the light line and Brewster line, showing an omnidirectional reflectance range at the first and
second harmonic. Propagating states, light gray; evanescent states, white; and omnidirectional
reflectance range, dark gray. The film parameters are n, = 4.6 and n, = 1.6 with a thickness ratio

of h,/h, =
parameters measured in the experiment.

1.6/0.8. These parameters are similar to the actual polystyrene-tellurium film

rium) and combines characteristic features
of both the metallic and dielectric mirrors.
It offers metallic-like omnidirectional re-
flectivity together with frequency selectiv-
ity and low-loss behavior typical of multi-
layer dielectrics.

We consider a system that is made of an
array of alternating dielectric layers cou-
pled to a homogeneous medium, character-
ized by n, (such as air with n; = 1). at the
interface. Electromagnetic waves are inci-
dent upon the multilayer film from the
homogeneous medium. Although such a
system has been analyzed extensively in the
literature (35-7). the possibility of omnidi-
rectional reflectivity was not recognized
until recently. The generic system is de-
scribed by the index of refraction profile in
Fig. 1, where &, and k, are the layer thick-
ness and #, and n, are the indices of refrac-
tion of the respective layers. The incident
wave has a wave vectork = ké_+ k¢ _and
a frequency of o = clkl/n,, where ¢ is the
speed of light in vacuum and é_and é are -
unit vectors in the x and y directions, re-
spectively. The wave vector together with
the normal to the periodic structure defines
a mirror plane of symmetry that allows us
to distinguish between two independent
electromagnetic modes: transverse electric
(TE) modes and transverse magnetic (TM)
modes. For the TE mode, the electric field |
is perpendicular to the plane, as is the
magnetic field for the TM mode. The dis-
tribution of the electric field of the TE
mode (or the magnetic field in the TM
mode) in a particular layer within the strat-
ified structure can be written as a sum of
two plane waves traveling in opposite di-
rections. The amplitudes of the two plane
waves in a particular layer « of one cell are
related to the amplitudes in the same layer
of an adjacent cell by a unitary 2 X 2
translation matrix U (7).

General features of the transport prop-
erties of the finite structure can be under-
stood when the properties of the infinite
structure are elucidated. In a structure with
an infinite number of layers, translational
symmetry along the direction perpendicular
to the layers leads to Bloch wave solutions
of the form

Ex(x,p) = Eg(x)eike )

where E;. (x, ») is a field component, £,.(x) is
periodic, with a period of length «, and K is
the Bloch wave number given by

K= g ln(% Tr(U™)

1 . II_'J
i{z[Tr(U'“’)]‘— l} ) (2)

Solutions of the infinite system can be
propagating or evanescent, corresponding
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to real or imaginary Bloch wave numbers,
respectively. The solution of Eq. 2 defines
the band structure for the infinite system,
w(K.k,). Tt is convenient to display the so-
lutions of the infinite structure by project-
ing the w(K.k) function onto the -k
plane: Examples of such projected struc-
tures are shown in Fig. 2. A and B. The
light gray areas highlight phase space
where K is strictly real. that is, regions of
propagating states. whereas the white areas
represent regions containing evanescent
states. The shape of the projected band
structures for the multilayer film can be
understood intuitively. At A, = 0, the band
sap for waves traveling normal to the lay-
ers is recovered. For k > 0, the bands
curve upward in frequency. As k, —> =, the
modes become largely confined to the slabs
with the high index of refraction and do not
couple between layers (and are therefore
independent of & ).

For a finite structure, the translational
symmetry in the directions parallel to the
layers is preserved; hence, k, remains a
conserved quantity. In the direction perpen-
dicular to the layers, the translational sym-
metry no longer exists. Nevertheless, the K
number, as defined in Eq. 2, is still rele-
vant, because it is determined purely by the
dielectric and structural property of a single
bilayer. In regions where K is imaginary,
the electromagnetic field is strongly atten-
uated. As the number of layers is increased,
the transmission coefficient decreases ex-
ponentially, whereas the reflectivity ap-
proaches unity.

Because we are primarily interested in
waves originating from the homogeneous
medium external to the periodic structure,
we will focus only on the portion of phase
space lying above the light line. Waves
originating from the homogeneous medium
satisfy the condition w = ck/n,. where n is
the refractive index of the homogeneous
medium, and therefore they must reside
above the light line. States of the homoge-
neous medium with k. = 0 are normal
incident. and those lying on the w = ck /n,
line with , = 0 are incident at an angle of
90°. '

The states in Fig. 2A that are lying in
the restricted phase space defined by the
light line and that have a (o, k) corre-
sponding to the propagating solutions (gray
areas) of the crystal can propagate in both
the homogencous medium and the struc-
ture. These waves will partially or en-
tirely transmit through the film. Those
states with (w. k,) in the evanescent regions
(white areas) can propagate in the homoge-
neous medium but will decay in the crys-
tal—waves corresponding to this portion
of phase space will be reflected off the
structure.

The multilayer system leading to Fig.
2A represents a structure with a limited
reflectivity cone because for any frequency
one can always find a k_ vector for which a
wave at that frequency can propagate in the
crystal and hence transmit through the film.
For example, a wave with & = 0.285 X
2wcla (dashed horizontal line in Fig. 24)
will be reflected for a range of & values
ranging from 0 (normal incidence) to
0.285 X 2w/a (90° incidence) in the TE
mode, whereas in the TM mode it begins to
transmit at a value of &, = 0.187 X
(~41° incidence). The necessary and suffi-
cient criterion (8) for omnidirectional re-
flectivity at a given frequency is that no
transmitting state of the structure exists
inside the light cone; this criterion is satis-
fied by frequency ranges marked in dark
gray in Fig. 2B. In fact, the system leading
to Fig. 2B exhibits two omnidirectional
reflectivity ranges.

The omnidirectional range is defined
from above by the normal incidence band
edge w, (k. = wa, k. = 0) (point a in Fig.

7.—/a

- 2B) and from below by the intersection of

the top of the TM allowed band edge with
the light line w(k, = w/a, k, = w/c) (point
b in Fig. 2B). )

The exact expression for the band edges is

l + A k (l)h L 12)
5 cos(k'Vh, + k' It%)
— 1\ . R .
+—5— cosk!"hy ~ kPh) + 120, (3)
where k (&) = V(wn/c)? — Af («=1,2)

and

nln,

Fig. 3. (left). The range to midrange ratio (w,,
- w)/1/2(w, + w), for the fundamental
frequency range of omnidirectional reflection,
plotted as contours. Here, the layers were set
to quarter wave thickness and n, > n,. The
ratio for our materials is about 45% (n,/n, =
2.875 and n,/n, = 1.6). It is located at the
intersection of the dashed lines (black dot).

l ‘k'(:x k(""
slom 1) TE

\ _ 2 k.‘lly k‘l:y

= [(I!l:k‘.‘:' ”::k‘.‘l.) _1_\{ ('”
STt \
RAWIST S

A dimensionless parameter used to quantify the
extent of the omnidirectional range is the range
to midrange ratio defined as (w, — w) " w, =
w,). Figure 3 is a plot of this ratio as a function of
ny/n, and n in,, where w, and o, are determined
by solutions of Eq. 3 with quarter wave layer
thickness. The contours in this figure represent
various equiomnidirectional ranges for ditferent
material index parameters and coutd be useful for
design purposes.

It may also be useful to have an approxi-
mate analytical expression for the extent of
the gap. This can be obtained by setting
cos(k Pk, — k2h,) = 1inEq. 3. We find
that for a given incident angle 8,, the approx-
imate width in frequency is

A(ﬂ(eo)
2c

hy V0 = nglsin®8 + hy\myt - nysin*®,

o -]

A+l \A +1
(5)

At normal incidence, there is no disti'n_ctio,r},

between TM and TE modes. At increasingly
oblique angles, the gap of the TE mode in-
creases, whereas the gap of the TM mode
decreases. In addition, the center of the gap
shifts to higher frequencies. Therefore, the

Reflectance (%)

Wavelength (um)

(dashed line) reflectance (in percent) as a function of wavelength for TM and TE modes at normal
45°, and 80° angles of incidence, showing an omnidirectional reflectivity band.
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Fig. 4 (right). Calculated (solid line) and measured
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criterion for the existence of omnidirectional
reflectivity can be restated as the occurrence
of a frequency overlap between the gap at
normal incidence and the gap of the ™
mode at 90°. Analytical expressions for the
range to midrange ratio can be obtained by

setting

2c - ‘nl - n;
w, = ——————¢c0s” { ~ | T
", + Iy ny sl

(6a)
2¢
w’.z —_—3 = 3
oy =y T By =y
. N TR 5 5 __‘—_'—1|
TR P P N LY
|n|' Ny o\t Ty

(6b)

Moreover. the maximum range width is at-
tained for thickness values that are not equal
to the quarter wave stack although the in-
crease in band width gained by deviating
from the quarter wave stack is typically only
a few percent (4).

In general, the TM mode defines the low-
er frequency edge of the omnidirectional
range. An example can be seen in Fig. 2B for
a particular choice of the indices of refrac-
tion. This can be proven by showing that

dw ow

—_— > —

Ok, Ok
in the region that resides inside the light
line. The physical reason for Eq. 7 lies in
the vectorial nature of the electric field. In
the upper portion of the first band, the
electric field concentrates its energy in the
high dielectric regions. Away from normal
incidence, the electric field in the TM mode
has a component in the direction of period-
icity, and this component forces a larger
portion of the electric field into the low
dielectric regions. The group velocity of
the TM mode is therefore enhanced. In
contrast, the electric field of the TE mode
is always perpendicular to the direction of
periodicity and can concentrate its energy
primarily in the high dielectric region.

A polystyrene-tellurium (PS-Te) materi-
als system was chosen to demonstrate omni-
directional reflectivity. Tellurium has a high
index of refraction and low loss characteris-
tics in the frequency range of interest. In

(7

TE

addition, its relatively low latent heat of con-

densation together with the high glass transi-

Table 1. Penetration depth (£) at different angles
of incidence for the TE and TM modes.

Angle of incidence

(degrees) Erm () Ere (um)
0 2.51 251
45 3.05 243
80 4.60 239

tion temperature of the PS minimizes diftu-
sion of Te into the polymer layer. The choice
of PS, which has a series of absorption peaks
in the measurement range (9). demonstrates
the competition between reflectivity and ab-
sorption that occurs when an absorption peak
is located in the evanescent state region. The
Te (0.8 pm) and PS (1.65 pm) films were
deposited (/0) sequentially to create 3 nine-
layer film (11).

The optical response of this particular mul-
tilayer film was designed to have a high reflec-
tivity region in the 10- to [3-um range for any
angle of incidence (in the experment. we mead-
sure from 0° to 80°). The optical response at
oblique angles of incidence was measured with
a Fourier Transform Infrared Spectrometer
(Nicolet 860) fitted with a polarizer (ZnS; Spec-
traTech) and an angular reflectivity stage
(VeeMax; SpectraTech). At normal incidence.
the reflectivity was measured with a Nicolet
Infrared Microscope. A freshly evaporated alu-
minurh mirror was used as a background for the
reflectance measurements.

Good agreement between the calculated
(12) and measured reflectance spectra at
normal, 45°, and 80° incidence for the TM
and TE modes is shown in Fig. 4. The
regimes of high reflectivity at the different
angles of incidence overlap, thus forming a
reflective range of frequencies for light of
any angle of incidence. The frequency lo-
cation of the omnidirectional range is de-
termined by the layer thickness and can be
tuned to meet specifications. The range is
calculated from Eq. 6 to be 5.6 um, and the
center wavelength is 12.4 pm, correspond-
ing to a 45% range to midrange ratio shown
in dashed lines in Fig. 3 for the experimen-
tal index of refraction parameters. These
values are in agreement with the measured
data. The calculations are for lossless me-
dia and therefore do not predict the PS
absorption band at ~13 and 14 pm. The PS
absorption peak is seen to increase at larger
angles of incidence for the TM mode and to
decrease for the TE mode. The physical
basis for these phenomena lies in the rela-
tion between the penetration depth and the
amount of absorption. The penetration depth is
£ « Im(1/K), where K is the Bloch wave num-
ber. It can be shown that £ is a monotonically
increasing function of the incident angle for the
T™M mode of an omnidirectional reflector and is
relatively constant for the TE mode. Thus, the
TM mode penetrates deeper into the structure at
increasing angles of incidence (Table 1) and is
more readily absorbed. The magnitude of the
imaginary part of the Bloch wave number for a
mode lying in the gap is related to its distance
from the band edges. This distance increases
in the TE mode because of the widening of
the gap at increasing angles of incidence and
decreases in the TM mode because of the
shrinking of the gap.

The PS-Te structure does not have a com-
plete photonic band gap. Its omnidirectional
reflectivity is due instead to the restricted
phase space available to the propagating
states of the system. The materials and pro-
cesses were chosen for their low cost and
applicability to large area coverage. The pos-
sibility of achieving omnidirectional reflec-
tivity itself is not associated with any partic-
ular choice of materials and can be applied t
mony wavelengths of interest. Qur structure
offers metallic-like omnidirectional reflectiv-
ity for a wide range of frequencies and at the
same time is of low loss. In addition. itallows
the flexibility of frequency selection.
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